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Abstract7

Here we address the current issues of inefficiency and over-penalization in the massively univariate approach followed8

by the correction for multiple testing, and propose a more efficient model that pools and shares information among9

brain regions. Using Bayesian multilevel (BML) modeling, we control two types of error that are more relevant than the10

conventional false positive rate (FPR): incorrect sign (type S) and incorrect magnitude (type M). BML also aims to achieve11

two goals: 1) improving modeling efficiency by having one integrative model and thereby dissolving the multiple testing12

issue, and 2) turning the focus of conventional null hypothesis significant testing (NHST) on FPR into quality control by13

calibrating type S errors while maintaining a reasonable level of inference efficiency. The performance and validity of this14

approach are demonstrated through an application at the region of interest (ROI) level, with all the regions on an equal15

footing: unlike the current approaches under NHST, small regions are not disadvantaged simply because of their physical16

size. In addition, compared to the massively univariate approach, BML may simultaneously achieve increased spatial17

specificity and inference efficiency, and promote results reporting in totality and transparency. The benefits of BML are18

illustrated in performance and quality checking using an experimental dataset. The methodology also avoids the current19

practice of sharp and arbitrary thresholding in the p-value funnel to which the multidimensional data are reduced. The20

BML approach with its auxiliary tools is available as part of the AFNI suite for general use.21

Introduction22

The typical neuroimaging data analysis at the whole brain level starts with a preprocessing pipeline, and then the23

preprocessed data are fed into a voxel-wise time series regression model for each subject. An effect estimate is then obtained24

at each voxel as a regression coefficient that is, for example, associated with a task/condition or a contrast between two25

effects or a linear combination among multiple effects. Such effect estimates from individual subjects are next incorporated26

into a population model for generalization, which can be parametric (e.g., Student’s t-test, AN(C)OVA, univariate (Poline27

and Brett, 2012) or multivariate GLM (Chen et al., 2014), linear mixed-effects (LME) (Chen et al., 2013)) or nonparametric28

(e.g., permutations (Nichols and Holmes, 2001; Smith and Nichols, 2009), bootstrapping, rank-based testing). In either29

case, this generally involves one or more statistical tests at each spatial element separately.30

Issues with controlling false positives31

As in many scientific fields, the typical neuroimaging analysis has traditionally been conducted under the framework of32

null hypothesis significance testing (NHST). As a consequence, a big challenge when presenting the population results is to33

properly handle the multiplicity issue resulting from the tens of thousands of simultaneous inferences, but this undertaking34

is met with various subtleties and pitfalls due to the complexities involved: the number of voxels in the brain (or a restricting35

mask) or the number of nodes on surface, spatial heterogeneity, violation of distributional assumptions, etc. The focus of36
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the present work will be on developing an efficient approach from Bayesian perspective to address the multiplicity issue as37

well as some of the pitfalls associated with NHST (Appendix A). We first describe the multiplicity issue and how it directly38

results from the NHST paradigm and inefficient modeling, and then translate many of the standard analysis features to39

the proposed Bayesian framework.40

Following the conventional statistical procedure, the assessment for a BOLD effect is put forward through a null41

hypothesis H0 as the devil’s advocate; for example, an H0 can be formulated as having no activation at a brain region42

under, for example, the easy condition, or as having no activation difference between the easy and difficult conditions. It is43

under such a null setting that statistics such as Student’s t- or F -statistic are constructed, so that a standard distribution44

can be utilized to compute a conditional probability that is the chance of obtaining a result equal to, or more extreme45

than, the current outcome if H0 is imagined as the ground truth. The rationale is that if this conditional probability is46

small enough, one may feel comfortable in rejecting the straw man H0 and in accepting the alternative at a tolerable risk.47

While NHST may be a reasonable formulation under some scenarios, there is a long history of arguments that emphasize48

the mechanical and interpretational problems with NHST (e.g., Cohen, 2014; Gelman, 2016) that might have perpetuated49

the reproducibility crisis across many disciplines (Loken and Gelman, 2017). Within neuroimaging specifically, there are50

strong indications that a large portion of task-related BOLD activations are usually unidentified at the individual subject51

level due to the lack of power (Gonzalez-Castillo et al., 2012). The detection failure, or false negative rate, at the population52

level would probably be at least as large. Therefore, it is likely far-fetched to claim that no activation or no activation53

difference exists anywhere in the whole brain, except for the regions of white matter and cerebrospinal fluid. In other54

words, the global null hypothesis in neuroimaging studies is virtually never true. The situation with resting-state data55

analysis is likely worse than with task-related data, as the same level of noise is more impactful on seed-based correlation56

analysis due to the lack of objective reference effect. Since no ground truth is readily available, dichotomous inferences57

under NHST as to whether an effect exists in a brain region are intrinsically problematic, and it is practically implausible58

to truly believe the validity of H0 as a building block when constructing a model. Furthermore, the dichotomous filtering59

under NHST paints a biased picture in the literature and leads to suboptimal meta analyses that are already compromised60

without the incorporation or availability of effect reporting; for instance, conjunction analysis in neuroimaging is such an61

artificial dichotomy of overlapping brain regions under two or more conditions based on arbitrary thresholding.62

Achieving statistical significance has been widely used as the standard screening criterion in scientific results reporting63

as well as in the publication reviewing process. The difficulty in passing a commonly accepted threshold with noisy data64

may elicit a hidden misconception: A statistical result that survives the strict screening with a small sample size seems65

to gain an extra layer of strong evidence, as evidenced by phrases in the literature such as “despite the small sample size”66

or “despite limited statistical power.” However, when the statistical power is low, the inference risks can be perilous, as67

demonstrated with two different types of error as illustrated in Appendix B from the conventional type I and type II68

errors: incorrect sign (type S) and incorrect magnitude (type M). The conventional concept of FPR controllability is not69

a well-balanced choice under all circumstances or combinations of effect and noise magnitudes. We consider a type S error70

to be more severe than a type M error, and thus we aim to control the former while at the same time reducing the latter71

as much as possible, parallel to the similarly lopsided strategy of strictly controlling type I errors at a tolerable level under72

NHST while minimizing type II errors.73

Issues with handling multiplicity74

In statistics, multiplicity is more often referred to as multiple comparisons or multiple testing problem when more75

than one statistical inference is made simultaneously. In neuroimaging, the multiplicity issue may sneak into data analysis76

through several channels (Appendix C), affecting expected FPRs in diverse ways. One widely recognized aspect of multi-77

plicity, multiple testing, occurs when the investigator fits the same model for each voxel in the brain. However, multiplicity78

also occurs when the investigator conducts multiple comparisons within a model, tests two tails of a t-test separately79

when prior information is unavailable about the directionality, and branches in the analytic pipelines. The challenges of80

dealing with multiple testing at the voxel or node level have been recognized within the neuroimaging community almost81

as long as the history of FMRI. Substantial efforts have been devoted to ensuring that the actual type I error (or FPR)82

matches its nominal requested level under NHST. Due to the presence of spatial non-independence of noise, the classical83

approach to countering multiple testing through Bonferroni correction in general is highly conservative when applied to84

neuroimaging, so the typical correction efforts have been channeled into two main categories, 1) controlling for FWE, so85

that the overall FPR at the cluster or whole brain level is approximately at the nominal value, and 2) controlling for false86
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discovery rate (FDR), which harnesses the expected proportion of identified items or discoveries that are incorrectly labeled87

(Benjamini and Hochberg, 1995). FDR can be used to handle a needle-in-haystack problem where a small number of effects88

existing among a sea of zero effects in, for example, bioinformatics. However, FDR is usually quite conservative for typical89

neuroimaging data and thus is not widely adopted. Therefore, we do not discuss it hereafter in the current context.90

Typical FWE correction methods for multiple testing include Monte Carlo simulations (Forman et al., 1995), random91

field theory (Worsley et al., 1992), and permutation testing (Nichols and Holmes, 2001; Smith and Nichols, 2009). Re-92

gardless of the specific FWE correction methodology, the common theme is to use the spatial extent, either explicitly or93

implicitly, as a pivotal factor. One recent study suggested that the nonparametric methods seem to have achieved a more94

uniformly accurate controllability for FWE than their parametric counterparts (Eklund et al., 2016), even though paramet-95

ric methods may exhibit more flexibility in modeling capability (and some parametric methods can show reasonable FPR96

controllability; Cox et al., 2017). Because of this recent close examination (Eklund et al., 2016) on the practical difficulties97

of parametric approaches herein controlling FWE, there is currently an implied rule of thumb (e.g., Yeung, 2018) that98

demands any parametric correction be based on a voxel-wise p-value threshold at 0.001 or less. Such a narrow modeling99

choice with a harsh cutoff could be highly limiting, depending on several parameters such as trial duration (event-related100

versus block design), and would definitely make small regions even more difficult to pass through the NHST filtering system.101

In other words, the leverage on spatial extent with a Procrustean criterion undoubtedly incurs a collateral damage: small102

regions (e.g., amygdala) or subregions within a brain area are inherently placed in a disadvantageous position even if small103

regions have similar signal strength as larger ones; that is, to be able to surpass the same threshold bar, small regions104

would have to reach a much higher signal strength to survive a uniform criterion at the cluster threshold or whole brain105

level.106

The concept of using contiguous spatial extent as a leveraging mechanism to control for multiplicity can be problematic107

from another perspective. For example, suppose that two anatomically separate regions are spatially distant and the108

statistical evidence (as well as signal strength) for each of their effects is not strong enough to pass the cluster correction109

threshold individually. However, if another two anatomically regions that have exactly the same statistical evidence (as well110

as signal strength) are adjacent, their spatial contiguity could elevate their combined volume to the survival of correction111

for FWE. Trade-offs are inherently involved in these final interpretations. One may argue that the sacrifice in statistical112

power under NHST is worth the cost in achieving the overall controllability of type I error, but it may be unnecessarily113

over-penalizing to stick to such an inflexible criterion rather than utilizing the neurological context or prior knowledge, as114

discussed below.115

To summarize the debate surrounding cluster inferences, multiplicity is directly associated with the concept of false116

positives or type I errors under NHST, and the typical control for FWE at a preset threshold (e.g., 0.05, the implicitly117

accepted tolerance level in the field) is usually considered a safeguard for reproducibility. Imposing a threshold on cluster118

size (perhaps combined with signal strength) to protect against the overall FPR has the undesirable trade-off cost of inflating119

false negative rates or type II errors, which can greatly affect individual result interpretations as well as reproducibility120

across studies. The current practice of handling multiple testing through controlling the overall FPR in neuroimaging under121

the null hypothesis significance testing (NHST) paradigm excessively penalizes the statistical power with inflated type II122

errors. More fundamentally, the adoption of dichotomous decisions through sharp thresholding under NHST may not be123

appropriate when the null hypothesis itself is not pragmatically relevant because the effect of interest takes a continuum124

instead of discrete values and is not expected to be null in most brain regions. When the noise inundates the signal,125

two different types of error are more relevant than the concept of FPR: incorrect sign (type S) and incorrect magnitude126

(type M). In general, several multiplicity-related challenges in neuroimaging appear to be tied closely to the fundamental127

mechanisms of NHST approaches introduced to counterbalance between two counterfactual errors (type I and type II),128

which are the cornerstones of NHST. Therefore, we put forward a list of potential problems with NHST in Appendix A.129

Structure of the work130

In light of the aforementioned backdrop, we believe that the current modeling approach is inefficient. First, we question131

the appropriateness of the severe penalty currently levied to the voxel- or node-wise data analysis. In addition, we endorse132

the ongoing statistical debate surrounding the ritualization of NHST and its dichotomous approach to results reporting and133

in the review process, and aim to raise the awareness of the issues embedded within NHST (Loken and Gelman, 2017) in the134

neuroimaging community. In addition, with the intention of addressing some of the issues discussed above, we view multiple135

testing as a problem of inefficient modeling induced by the conventional massively univariate methodology. Specifically,136
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Table 1: Acronyms and terminology.

BML Bayesian multilevel NHST null hypothesis significance testing
FPR false positive rate NUTS No-U-Turn sampler
FWE family-wise error power chance of rejecting H0 when H0 is false
GLM general linear model PPC posterior predictive check
HMC Hamiltonian Monte Carlo type I chance of rejecting H0 when H0 is true (“false positive”)
LME linear mixed-effects type II failing to reject H0 when H0 is false (“false negative”)
LOO leave one out type M exaggerating the effect magnitude
MCMC Markov chain Monte Carlo type S estimating the effect with an incorrect sign

the univariate approach starts, in the same vein as a null hypothesis setting, with a pretense of spatial independence, and137

proceeds with many isolated or segmented models. To avoid the severe penalty of Bonferroni correction while recovering138

from or compensating for the false presumption of spatial independence, the current practices deal with multiple testing by139

discounting the number of models due to spatial relatedness. However, the collateral damages incurred by this to-and-fro140

process are unavoidably the loss of modeling efficiency and the penalty for detection power under NHST.141

Here, we propose a more efficient approach through BML that could be used to confirm, complement or replace the142

standard NHST method. As a first step, we adopt a group analysis strategy under the Bayesian framework through143

multilevel modeling on an ensemble of ROIs and use this to resolve two of the four multiplicity issues above: multiple144

testing and double sidedness (Appendix C). Those ROIs are determined independently from the current data at hand, and145

they can be selected through various methods such as previous studies, an anatomical or functional atlas, or parcellation146

of an independent dataset in a given study; the regions could be defined through masking, manual drawing, or balls about147

a center reported previously. The proposed BML approach dissolves multiple testing through a multilevel model that more148

accurately accounts for data structure as well as shared information, and it consequentially improves inference efficiency.149

The modeling approach will be extended to other scenarios in our future work.150

As a novel approach, BML here is applied to neuroimaging in dealing with multiplicity at the ROI level, with a potential151

extension to whole brain analysis in future work. We present this work in a purposefully (possibly overly) didactic style in152

the appendices, reflecting our own conceptual progression. Our goal is to convert the traditional voxel-wise GLM into an153

ROI-based BML through a step-wise progression of models (GLM → LME → BML). The paper is structured as follows.154

In the next section, we first formulate the population analysis at each ROI through univariate GLM (parallel to the typical155

voxel-wise population analysis), then turn multiple GLMs into one LME by pivoting the ROIs as the levels of a random-156

effects factor1, and lastly convert the LME to a full BML. The BML framework does not make statistical inferences157

for each measuring entity (ROI in our context) in isolation. Instead, the BML weights and borrows the information158

based on the precision information across the full set of entities, striking a balance between data and prior knowledge; in a159

nutshell, the crucial feature here is that the ROIs, instead of being loose, are associated with each other through a Gaussian160

assumption under BML. As a practical exemplar, we apply the modeling approach to an experimental dataset and compare161

its performance with the conventional univariate GLM. In the Discussion section, we elaborate the advantages, limitations,162

and prospects of BML in neuroimaging. Major acronyms and terms are listed in Table 1.163

Theory: Bayesian multilevel modeling164

Throughout this article, the word effect refers to a quantity of interest, usually embodied in a regression (or correlation)165

coefficient, the contrast between two such quantities, or the linear combination of two or more such quantities from individual166

subject analysis. Italic letters in lower case (e.g., α) stand for scalars and random variables; lowercase, boldfaced italic167

letters (a) for column vectors; Roman and Greek letters for fixed and random effects in the conventional statistics context,168

respectively, on the righthand side of a model equation (the Greek letter θ is reserved for the effect of interest); p(·)169

represents a probability density function.170

1In real practice, the ROIs are not randomly drawn from a hypothetical pool like recruiting experimental subjects. However, from the
practical perspective it is not too far-fetched to assume that the effects at those ROIs form a distribution such as Gaussian, similar to the
assumption of Gaussian distribution for cross-subject effects. It is under this assumption that we treat the cross-ROI effects as random, and the
assumption can be further validated through various cross-validation methods and model comparisons later in this paper.
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Bayesian modeling for two-way random-effects ANOVA171

As our main focus here is FMRI population analysis, we extend the BML approach for one-way ANOVA (Appendix D)
to a two-way ANOVA structure, and elucidate the advantages of data calibration and partial pooling in more details. At
the population level, the variability across n subjects has to be accounted for; in addition, the within-subject correlation
structure among the ROIs also needs to be maintained. The conventional approach formulates r separate GLMs each of
which fits the data yij from the ith subject at the jth ROI,

yij = θj + εij , i = 1, 2, ..., n, (1)

where j = 1, 2, ..., r, θj is the population effect at the jth ROI, and εij is the residual term that is assumed to independently
and identically follow N (0, σ2). Each of the r models in (1) essentially corresponds to a Student’s t-test, and the immediate
challenge is the multiple testing issue among those r models: with the assumption of exchangeability among the ROIs, is
Bonferroni correction the only valid solution? If so, most neuroimaging studies would have difficulty in adopting ROI-based
analysis due to this severe penalty, which may be the major reason that discourages the use of region-level analysis with a
large number of regions. Alternatively, the r separate GLMs in (1) can be merged into one GLM by pooling the variances
across the r ROIs,

yij = θj + εij , i = 1, 2, ..., n, j = 1, 2, ..., r. (2)

The two approaches, (1) and (2), usually render similar inferences unless the sampling variances are dramatically different
across the ROIs. To compare different models through information criteria (Vehtari et al., 2017), we can solve the GLM
(2) in a Bayesian fashion,

yij |θj ∼ N (θj , σ
2), i = 1, 2, ..., n, j = 1, 2, ..., r, (3)

where the effects θj are assigned with a noninformative prior so that no pooling is applied among the ROIs, leading to172

virtually identical inferences as the GLM (2).173

The approach with model (1), (2), or (3) does not involve any pooling among the ROIs in the sense that the information
at one ROI is assumed to reveal nothing about any other ROIs, and may lead to overfitting. To improve model fitting, we
first adopt two-way random-effects ANOVA, and formulate the following platform with data from n subjects,

yij = b0 + πi + ξj + εij , i = 1, 2, ..., n, j = 1, 2, ..., r, (4)

where b0 represents the population effect, πi and ξj code the deviation or random effect of the ith subject and jth ROI174

from the overall mean b0, respectively, and they are assumed to be iid with2 N (0, λ2) and N (0, τ2), and εij is the residual175

term that is assumed to follow N (0, σ2).176

Parallel to the situation with one-way ANOVA (Appendix D), the two-way ANOVA (4) can be conceptualized as an177

LME without changing its formulation. Specifically, the overall mean b0 is a fixed-effects parameter, while both the subject-178

and ROI-specific effects, πi and ξj , are treated as random variables. When n, r ≥ 3, the number of data points nr is greater179

than the total number of model parameters, n+r+2, both the ANOVA and LME frameworks are identifiable. In addition,180

we continue to define θj = b0 + ξj as the effect of interest at the jth ROI. The LME framework has been well developed181

over the past half century, under which we can estimate variance components such as λ2 and τ2, and fixed effects such as182

b0 in (4). Therefore, conventional inferences can be made by constructing an appropriate statistic for a null hypothesis.183

Its modeling applicability and flexibility have been substantiated by its adoption in FMRI group analysis (Chen et al.,184

2013). Furthermore, the LME formulation (4) has a special layout, a crossed random-effects (or cross-classified) structure,185

which has been applied to inter-subject correlation (ISC) analysis for naturalistic scanning (Chen et al., 2017a) and to ICC186

analysis for ICC(2,1) (Chen et al., 2017c). A hierarchical model is a particular multilevel model in which parameters are187

nested within one another, and the cross-classified structure here showcases the difference between the two conceptions:188

the two clusters (ROI and subjects) intertwine with each other and form a factorial structure (n subjects by r ROIs),189

distinct from a hierarchical or nested one.190

2For simplicity, here we assume that both πi and ξj being independent and identically distributed (iid). In reality, the strict iid assumption
can be problematic for the cross-ROI effects when they are spatially proximate or neurologically related. Nevertheless, the assumption can be
relaxed later on to exchangeability for BML.
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However, LME cannot offer a solution in making inferences regarding the ROI effects θj : to estimate θj , the LME (4)
would become over-parameterized (i.e., an over-fitting problem). To proceed for the sake of intuitive interpretations, we
temporarily assume a known sampling variance σ2, a known cross-subjects variance λ2, and a known cross-ROI variance
τ2, and transform the ANOVA (4) to its Bayesian counterpart,

yij |πi, θj ∼ N (πi + θj , σ
2), i = 1, 2, ..., n, j = 1, 2, ..., r. (5)

Then the posterior distribution of θj with prior distributions, πi ∼ N (0, λ2) and θj ∼ N (b0, τ
2), can be analytically derived

(Appendix E) with the data y = {yij},

θj |b0, τ, λ,y ∼ N (θ̂j , V ), where θ̂j =
n

λ2+σ2 ȳ·j + 1
τ2 b0

n
λ2+σ2 + 1

τ2

, V =
1

n
λ2+σ2 + 1

τ2

, j = 1, 2, .., r. (6)

Similarly to the one-way ANOVA scenario (Appendix D), we have an intuitive interpretation for 1
V = n

λ2+σ2 + 1
τ2 : the

posterior precision for θj |b0, τ, λ,y is the sum of the cross-ROI precision 1
τ2 and the combined sampling precision n

λ2+σ2 .
Under the r completely separate GLMs in (1), the cross-subjects variance λ2 and the sampling variance σ2 could not be
estimated separately. Interestingly, the following relationship,

n

λ2 + σ2
<

1

V
=

n

λ2 + σ2
+

1

τ2
≤ n

σ2
+

1

τ2
, (7)

reveals that the posterior precision lies somewhere among the precisions of θ̂j from the r separate GLMs. Furthermore,
the posterior mode of θ̂j in (6) can be expressed as a weighted average between the individual sample means ȳ·j and the
overall mean b0,

θ̂j =
n

λ2+σ2 ȳ·j + 1
τ2 b0

n
λ2+σ2 + 1

τ2

= wȳ·j + (1− w)b0 = b0 + w(ȳ·j − b0) = ȳ·j − (1− w)(ȳ·j − b0), j = 1, 2, .., r, (8)

where the weight w = nV
λ2+σ2 , indicating the counterbalance of partial pooling between the individual mean ȳ·j for the191

jth entity and the overall mean b0, the adjustment of θj from the overall mean b0 toward the observed mean ȳ·j , or the192

observed mean ȳ·j being shrunk toward the overall mean b0.193

Related to the concept of ICC, the correlation between two ROIs, j1 and j2, due to the fact that they are measured
from the same set of subjects, can be derived in a Bayesian fashion as,

corr(yij1 , yij2 |λ2, τ2, σ2) =
cov(πi + θj1 + εij1 , πi + θj2 + εij2)√
var(πi + θj1 + εij1)var(πi + θj2 + εij2)

|λ2, τ2, σ2

=
λ2

λ2 + τ2 + σ2
, j1, j2 = 1, 2, .., r (j1 6= j2).

(9)

Similarly, the correlation between two subjects, i1 and i2, due to the fact that their effects are measured from the same set
of ROIs, can be derived in a Bayesian fashion as,

corr(yi1j , yi2j |λ2, τ2, σ2) =
cov(πi1 + θj + εi1j , πi2 + θj + εi2j)√
var(πi1 + θj + εi1j)var(πi2 + θj + εi2j)

|λ2, τ2, σ2

=
τ2

λ2 + τ2 + σ2
, i1, i2 = 1, 2, .., n (i1 6= i2).

The exchangeability assumption is crucial here as well for the BML system (4). Conditional on ξj (i.e., when the ROI194

is fixed at index j), the subject effects πi can be reasonably assumed to be exchangeable since the experiment participants195

are usually recruited randomly from a hypothetical population pool as representatives (thus the concept of coding them196

as dummy variables). As for the ROI effects ξj , here we simply assume the validity of exchangeability conditional on the197

subject effect πi (i.e., when subject is fixed at index i), and address the validity later in Discussion.198

To summarize, the main difference between the conventional GLM and BML lies in the assumption about the brain199

regions: the effects (e.g., θj in (3)) are assumed to have a noninformative flat prior while they are assigned with a Gaussian200

prior under BML. In other words, the effect at each region is estimated independently from other regions under GLM, thus201

there is no information shared across regions. In contrast, the effects across regions are shared, regularized and partially202

pooled through the Gaussian assumption under BML for the effects across regions; such a cross-region Gaussian assumption203
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bears the same rationale as the cross-subject Gaussian assumption. So far, we have presented a “simplest” BML scenario.204

Specifically, we have: ignored the possibility of incorporating any explanatory variables such as subject-specific quantities205

(e.g., age, IQ) or behavioral data (e.g., reaction time); assumed known variances such as τ2 and σ2; and presumed that the206

data yij have been directly measured without precision information available. Further extensions are needed and discussed207

for realistic applications in the next subsection.208

Further extensions of Bayesian modeling for two-way random-effects ANOVA and full209

Bayesian implementations210

To gain intuitive interpretations, we have so far assumed that the variances σ2, λ2 and τ2 in (5) (and σ2 in (23)211

of Appendix D) are known. In practice, those parameters for the prior distributions are not available. Approximate212

(or empirical) Bayesian approaches could be adopted to provide a computationally economical “workaround” solution.213

For example, one possibility is to first solve the corresponding LME and directly apply the estimated variances to the214

analytical formula (6) (and (24) in Appendix D). However, there are two limitations associated with approximate Bayesian215

approaches. The reliability or uncertainty for the estimated variances are not taken into consideration and thus may result216

in inaccurate posterior distributions. In addition, analytical formulas such as (6) (and (24) in Appendix D) are usually217

not available when we extend the prototypical models (5) (and (23) in Appendix D) to more generic scenarios, as shown218

below.219

At the population level, one may incorporate one or more subject-specific covariates such as subject-grouping variables
(patients vs. controls, genotypes, adolescents vs. adults), within-subject (e.g., multiple conditions such as positive, negative
and neutral emotions) or quantitative explanatory variables (age, behavioral or biometric data). To be able to adapt such
scenarios, we first need to expand the models considered previously with a simple intercept (Student’s t-test) to r separate
GLMs and one GLM with pooled variances, generalizing the models (1) and (3), respectively, to

yij = xTi θj + εij , i = 1, 2, ..., n, (10)

yij |θj ∼ N (xTi θj , σ
2), i = 1, 2, ..., n, j = 1, 2, ..., r, (11)

where the vector xi contains the subject-specific values of the covariates, with its first component 1 that is associated with
the intercept, and the vector θj codes the effects associated with the covariates xi (and each component in θj is assigned
with a noninformative prior in (11)), j = 1, 2, ..., r. In parallel, the conventional two-way random-effects ANOVA or LME
(4) evolves to

yij = xTi b+ πi + xTi ξj + εij , i = 1, 2, ..., n, j = 1, 2, ..., r, (12)

where b and ξj represent the population effects and region-specific deviations corresponding to those covariates, respectively.
Similarly, the BML counterpart can be formulated as

yij |xi, b, πi, ξj ∼ N (xTi b+ πi + xTi ξj , σ
2), πi ∼ N (0, λ2), ξj ∼ N (0, τ ), i = 1, 2, ..., n, j = 1, 2, ..., r, (13)

where τ is a 2× 2 variance-covariance matrix for ξj .220

Under the BML (13), the effect of interest θj can be an element of b, the intercept (as in (5)) or the effect for one of
the covariates xi. Similar to models with varying intercepts such as (4) and (5), both intercepts and slopes are assumed
to be different across ROIs in the models (12) and (13), and they are usually referred to as models with varying intercepts
and slopes. When there is only one covariate xi, the four models (10), (11), (12) and (13) simplify to, respectively,

yij = θ0j + θ1jxi + εij , i = 1, 2, ..., n, (14)

yij |xi, θ0j , θ1j ∼ N (θ0j + θ1jxi, σ
2), i = 1, 2, ..., n, j = 1, 2, ..., r, (15)

yij = b0 + b1xi + πi + ξ0j + ξ1jxi + εij , i = 1, 2, ..., n, j = 1, 2, ..., r, (16)

yij |xi,b0, b1, πi, ξ0j , ξ1j ∼ N (b0 + b1xi + πi + ξ0j + ξ1jxi, σ
2), πi ∼ N (0, λ2), (ξ0j , ξ1j)

T ∼ N ((0, 0)T , τ )

i = 1, 2, ..., n, j = 1, 2, ..., r,
(17)
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where τ is a 2× 2 variance-covariance matrix for (ξ0j , ξ1j)
T .221

The discussion so far has assumed that data yij are directly collected without measurement errors. However, in some222

circumstances (including neuroimaging) the data are summarized through one or more analytical steps. For example, the223

data yij in FMRI can be the BOLD responses from subjects under a condition or task that are estimated through a time224

series regression model, and the estimates are not necessarily equally reliable. Therefore, a third extension is desirable to225

broaden our model (13) so that we can accommodate the situation where the separate variances σ2
ij of measurement errors226

for each ROI and subject are known and should be included in the model (13) as inputs, instead of being treated as one227

hyperparameter. Similarly to the conventional meta-analysis, a BML with known sampling variances can be effectively228

analyzed by simply treating the variances as known values.229

Numerical implementations of BML230

Since no analytical formula is generally available for the BML (13), we proceed with the full Bayesian approach hereafter,231

and adopt the algorithms implemented in Stan, a probabilistic programming language and a math library in C++ on which232

the language depends (Stan Development Team, 2017). In Stan, the main engine for Bayesian inferences is No-U-Turn233

sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC) under the category of gradient-based Markov chain Monte234

Carlo (MCMC) algorithms.235

Some conceptual and terminological clarifications are warranted here. Under the LME framework, the differentiation236

between fixed- and random-effects is clearcut: fixed-effects parameters (e.g., b in (12)) are considered universal constants237

at the population level to be estimated; in contrast, random-effects variables (e.g., πi and ξj in (12)) are assumed to be238

varying and follow a presumed distribution. However, there is no such distinction between fixed and random effects in239

Bayesian formulations, and all effects are treated as parameters and are assumed to have prior distributions. Nevertheless,240

there is a loose correspondence between LME and BML: fixed effects under LME are usually termed as population effects241

under BML, while random effects in LME are typically referred to as entity effects3 under BML.242

Essentially, the full Bayesian approach for the BML systems (5) and (13) can be conceptualized as assigning hyperpriors243

to the parameters in the LME or ANOVA counterparts (4), and (12). Our hyperprior distribution choices follow the244

general recommendations in Stan (Stan Development Team, 2017). Specifically, an improper flat (noninformative uniform)245

distribution over the real domain for the population parameters (e.g., b in (13)) is adopted, since we usually can afford246

the vagueness thanks to the usually satisfactory amount of information available in the data at the population level. For247

the scaling parameters at the entity level, the variances for the cross-subjects effects πi and as well as in the variance-248

covariance matrix for ξj in (13), we use a weakly informative prior such as a Student’s half-t(3, 0, 1)4 or half-Gaussian249

N (0, 1) (restricting to the positive half of the respective distribution). For the covariance structure of ξj , the LKJ correlation250

prior5 is used with the parameter ζ = 1 (i.e., jointly uniform over all correlation matrices of the respective dimension).251

Lastly, the variance for the residuals εij is assigned with a half Cauchy prior with a scale parameter depending on the252

standard deviation of yij .253

To summarize, besides the Bayesian framework under which hyperpirors provide a computational convenience through254

numerical regularization, the major difference between BML and its univariate GLM counterpart is the Gaussian assumption255

for the ROIs (e.g., θj ∼ N (b0, τ
2) in the model (5)) that plays the pivotal role of pooling and sharing the information256

among the brain regions. It is this partial pooling that effectively takes advantage of the effect similarities among the257

ROIs and achieves higher modeling efficiency. In other words, we dissolve the multiple testing issue through borrowing258

information across the ROIs by incorporating the regions into one model with a prior assumption about their effects. In259

contrast, the inefficiency of the massively univariate approach lies in the fact that the modeler pretends that each voxel or260

ROI is unrelated and would have to pay the penalty for the pretense.261

Another different aspect about Bayesian inference is that it hinges around the whole posterior distribution of an262

effect. For practical considerations in results reporting, modes such as mean and median are typically used to show the263

centrality, while a quantile-based (e.g., 95%) interval or highest posterior density provides a condensed and practically264

useful summary of the posterior distribution. The typical workflow to obtain the posterior distribution for an effect of265

3Entity effects are more popularly called group effects in the Bayesian literature. However, to avoid potential confusions with the neuroimaging
terminology in which the word group refers to subject categorization (e.g., males vs. females, patients vs. controls) or the analytical step of
generalization from individual subjects to the group (corresponding to the word population in the Bayesian literature) level, we adopt entity to
mean each measuring unit such as subject and ROI in the current context.

4See https://en.wikipedia.org/wiki/Folded-t_and_half-t_distributions for the density p(ν, µ, σ2) of folded non-standardized t-distribution,
where the parameters ν, µ, and σ2 are the degrees of freedom, mean, and variance.

5The LKJ prior (Lewandowski, Kurowicka, and Joe, 2009) is a distribution over symmetric positive-definite matrices with the diagonals of
1s.
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interest is the following. Multiple (e.g., 4) Markov chains are usually run in parallel with each of them going through a266

predetermined number (e.g., 2000) of iterations, half of which are thrown away as warm-up (or “burn-in”) iterations while267

the rest are used as random draws from which posterior distributions are derived. To gauge the consistency of an ensemble268

of Markov chains, the split R̂ statistic (Gelman et al., 2014) is provided as a potential scale reduction factor on split chains269

and as a diagnostic parameter to assist the analyst in assessing the quality of the chains. Ideally, fully converged chains270

correspond to R̂ = 1.0, but in practice R̂ < 1.1 is considered acceptable. Another useful parameter, the number of effective271

sampling draws after warm-up, measures the number of independent draws from the posterior distribution that would be272

expected to produce the same standard deviation of the posterior distribution as is calculated from the dependent draws273

from HMC. As the sampling draws are not always independent with each other, especially when Markov chains proceed274

slowly, one should make sure that the effective sample size is large enough relative to the total sampling draws so that a275

reasonable accuracy can be achieved to derive the quantile intervals for the posterior distribution. For example, a 95%276

quantile interval requires at least an effective sample size of 100. As computing parallelization can only be executed for277

multiple chains of the HMC algorithms, the typical BML analysis can be effectively conducted on any system with at least278

4 CPUs.279

One important aspect of the Bayesian framework is model quality check through various prediction accuracy metrics.280

The aim of the quality check is not to reject the model, but rather to check whether it fits the data well. For instance,281

posterior predictive check (PPC) simulates replicated data under the fitted model and then graphically compares actual data282

yij to the model prediction. The underlying rationale is that, through drawing from the posterior predictive distribution,283

a reasonable model should generate new data that look similar to the acquired data at hand. As a model validation tool,284

PPC intuitively provides a visual tool to examine any systematic differences and potential misfit of the model, similar to285

the visual examination of plotting a fitted regression model against the original data. Leave-one-out (LOO) cross-validation286

using Pareto-smoothed importance sampling (PSIS) is another accuracy tool (Vehtari et al., 2017) that uses probability287

integral transformation (PIT) checks through a quantile-quantile (Q-Q) plot to compare the LOO-PITs to the standard288

uniform or Gaussian distribution.289

BML applied to an ROI-based group analysis290

To demonstrate the performances of BML in comparison to the conventional univariate approach at the ROI level,291

we utilized an experimental dataset from a previous FMRI study (Xiao et al., 2018). Briefly, a cohort of 124 typically292

developing children (mean age = 6.6 years, SD = 1.4 years, range = 4 to 8.9 years; 54 males) was scanned while they293

watched Inscapes, a movie paradigm designed for collecting resting-state data to reduce potential head motion. In addition,294

a subject-level covariate was included in the analysis: the overall theory of mind ability based on a parent-report measure295

(the theory of mind inventory, or ToMI). FMRI images were acquired with the following EPI scan parameters: B0 = 3 T,296

flip angle = 70 ◦, echo time = 25 ms, repetition time = 2000 ms, 36 slices, planar field of view = 192 × 192 mm2, voxel size297

= 3.0 × 3.0 × 3.5 mm3, 210 volumes with a total scanning time of 426 seconds. Twenty-one ROIs (Table 3) were selected298

from the literature because of their potential relevancy to the current study, and they were neither chosen nor defined per299

the whole brain analysis results of the current data. Mean Fisher-transformed z-scores were extracted at each ROI from300

the output of seed-based correlation analysis (seed: right temporo-parietal junction at the MNI coordinates of (50, -60,301

18)) from each of the 124 subjects. The effect of interest at the population level is the relationship at each brain region302

between the behavioral measure of the overall ToMI and the region’s association with the seed. A whole brain analysis303

showed the difficulty of some clusters surviving FWE correction (Table 2).304

The data from the 21 ROIs were analyzed through the modeling triplets, GLMs (14) and (15), LME (16) and BML305

(17), with the effect of interest at the jth ROI being the relationship between ToMI and the ROI’s association with the306

seed: θ1j = b1 + ξ1j . The exchangeability assumption for LME and BML was deemed reasonable because, prior to the307

analysis, no specific information was available regarding the order and relatedness of the effects across subjects and ROIs.308

It is worth noting that the data were skewed with a longer right tail than left (black solid curve in Fig. 3a and Fig. 3b).309

When fitted at each ROI separately with GLM (simple regression in this case) using the overall ToMI as an explanatory310

variable, the model yielded lackluster fitting (Fig. 3a) in terms of skewness, the two tails, and the peak area. As shown in311

Fig. 1, five ROIs (R PCC, R TPJp, L IPL, L TPJ, and L aMTS/aMTG) reached a two-tailed significance level of 0.05,312

and two ROIs (PCC/PrC and vmPFC) achieved a two-tailed significance level of 0.1 (or one-tailed significance level of313

0.05 if directionality was a priori known). However, the burden of FWE correction (e.g., Bonferroni) for the ROI-based314

approach with univariate GLM is so severe that none of the ROIs could survive the penalizing metric.315
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Table 2: ROIs and FWE correction for their associated clustersa

voxel-wise p cluster threshold number of surviving ROIs ROIs
0.001 28 2 R PCC, PCC/PrC
0.005 66 4 R PCC, PCC/PrC., L IPL, L TPJ
0.01 106 4 R PCC, PCC/PrC., L IPL, L TPJ
0.05 467 4 R PCC, PCC/PrC., L IPL, L TPJ
0.05* 467 (4) (L aMTS/aMTG, R TPJp, vmPFC, dmPFC)

aMonte Carlo simulations were conducted using a mixed exponential spatial autocorrelation function (Cox et al., 2017) instead of FWHM to
determine the cluster threshold (voxel size: 3× 3× 3 mm3). The ROI abbreviations are listed in Table 3.
*Special note for the last row (voxel-wise p-value of 0.05): four ROIs including L IPL, L TPJ, R PCC, PCC/PrC survived together with their
clusters from the FWE correction, and the other four ROIs listed here (L aMTS/aMTG, R TPJp, vmPFC, and dmPFC) did not survive with
their clusters but showed some evidence of effect when the cluster size requirement was dropped.

Table 3: MNI coordinates of the 21 ROIsa

No ROI Coordinates (x, y, z)

1 R PCC (8, -59, 35)
2 R TPJp (56,-56,25)
3 R Insula (49, -8, -11)
4 L IPL (-55, -65, 27)
5 L SFG (-7, 58, 21)
6 R IFG (BA45) (47, 22, 6)
7 R IFG (BA9) (60, 25, 19)
8 L MTG (-51, -62, 5)
9 L CG (-5, 8, 42)
10 L IFG (-46, 24, 7)
11 ACC (0, 38, 10)
12 SGC (-2, 32, -8)
13 PCC/PrC (-2, -52, 26)
14 dmPFC (-2, 5, 14)
15 L TPJ (-46 -66, 18)
16 L vBG (-6 ,10, -8)
17 R vBG (6, 10, -8)
18 L aMTS/aMTG (-54, -10, -20)
19 R Amy/Hippo (24, -8, -22)
20 L Amy/Hippo (-24, -10, -20)
21 vmPFC (-2, 50, -10)

aThe 21 ROIs were chosen because of their potential involvement for the current experiment based on previous studies. Each ROI was created
as a ball with a center at the coordinates (in millimeters) from the literature (Xiao et al., 2017) and a radius of 6 mm. ROI abbreviations: L,
left hemisphere; R, right hemisphere; PCC/PrC, precuneus/posterior cingulate cortex; TPJp, posterior temporo-parietal junction; IPL, inferior
parietal lobe; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; aMTS/aMTG, anterior middle temporal sulcus/gyrus; CG, cingulate
gyrus; ACC, anterior cingulate cortex; SGC, subgenual cingulate cortex; dmPFC, dorsomedial prefrontal cortex; vBG, ventral basal ganglia;
Amy/Hippo, amygdala/hippocampus; vmPFC, ventromedial prefrontal cortex.
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(a) Comparisons: LME and BML

Term LME BML
Estimate SD Estimate SD 95% QI ESS R̂

sd(ξ0) 0.153 - 0.162 0.027 [0.118, 0.225] 551 1.00
sd(ξ1) 0.008 - 0.009 0.002 [0.005, 0.014] 947 1.00

corr(ξ0, ξ1) 0.88 0.773 0.161 [0.366, 0.985] 1054 1.00
sd(π) 0.076 - 0.077 0.006 [0.066, 0.091] 500 1.01
b0 0.168 0.034 0.167 0.036 [0.094, 0.241] 162 1.03
b1 0.007 0.004 0.007 0.004 [-0.001, 0.015] 468 1.00
σ 0.153 - 0.153 0.002 [0.149, 0.157] 2000 1.00

(b) Comparisons: GLM and BML

Model LOOIC SE
GLM -300.39 98.25
BML -2247.06 86.42

GLM - BML 1946.67 96.35

Table 4: Comparisons among GLM, LME and BML. (a) The seed-based correlation results at 21 ROIs from 124 subjects
were fitted with LME (using the R package lme4) and BML (using Stan with 4 chains and 1,000 iterations) separately,
in which overall ToMI was an explanatory variable. Random effects under LME correspond to group/entity-level effects
plus family specific parameters (standard deviation σ for the residuals εij) under BML, while fixed effects under LME
correspond to population-level effects under BML. The column headers SD, QI, and ESS are short for standard deviation,
quantile interval, effect sample size, respectively. The parameter estimates from the LME and BML outputs (columns in
gray) are very similar, even though priors were injected into BML. All R̂ values under BML were less than 1.1, indicating
that all the 4 chains converged well. The effective sizes for the population- and group/entity-level effect of ToMI were
468 and 947, respectively, enough to warrant quantile accuracy in summarizing the posterior distributions. Comparisons
between GLM and BML. (b) To directly compare with BML, the Bayesianized version of GLM (15) was fitted with the
data, and the higher predictive accuracy of BML is seen here with its substantial lower out-of-sample deviance measured
by the leave-one-out information criterion (LOOIC), the widely applicable (or Watanabe-Akaike) information criterion
(WAIC) through leave-one-out cross-validation, and the corresponding standard error (SE).

The ROI data were fitted with LME (16) and BML (17) using the overall ToMI as an explanatory variable through,316

respectively, the R (R Core Team, 2017) package lme4 (Bates et al., 2015) and Stan with the code translated to C++317

and compiled. Runtime for BML was 5 minutes including approximately 1 minute of code compilation on a Linux system318

(Fedora 25) with AMD Opteron 6376 at 1.4 GHz. All the parameter estimates at the population level were quite similar319

between the two models (Table 4(a)), indicating that the weakly informative priors we adopt for hyperparameters in BML320

had little impact on parameter estimation. However, of interest here are the effects at the entity (i.e., ROI), not population,321

level, which could be derived through BML but not LME. As for those effects at the ROI level, compared to the traditional322

ROI-based GLM, the shrinkage under BML can be seen in Fig. 1: most effect estimates were dragged toward the center.323

Similar to the ROI-based GLM without correction, BML demonstrated (Figures 1 and 2) strong evidence within 95%324

quantile interval of the overall ToMI effect at six ROIs (R PCC, R TPJp, L IPL, PCC/PrC, L TPJ, and L aMTS/aMTG),325

and within 90% (or 95% if directionality was a priori known) quantile interval at two additional ROIs (dmMPFC and326

vmPFC).327

One exception to the general shrinkage under BML is that the median effect, 0.025, at the region of R TPJp (second328

row in the table and box plot of Fig. 1) was actually higher than that under GLM, 0.018. Such an exception occurred329

because the final result is a combination or a tug of war between the shrinkage impact as shown in (8) and the correlation330

structure among the ROIs as shown in (9). Noticeably, the quality and fitness of BML can be diagnosed and verified331

through posterior predictor check (Fig. 3a and Fig. 3b) that compares the observed data with the simulated data based332

on the model: not only did BML accommodate the skewness of the data better than GLM, but also did the partial pooling333

render much better fit for the peak and both tails as well. Cross validation through LOO (Table 4(b), Fig. 3c and Fig. 3d)334

also manifested the advantage of BML fitting over GLM. Nevertheless, there is still room for the improvement of BML:335

the peak area could be fitted better, which may require nonlinearity or incorporating other potential covariates.336

One apparent aspect that the ROI-based BML excels is the completeness and transparency in results reporting: if337

the number of ROIs is not overwhelming (e.g., less than 100), the summarized results for every ROI can be completely338

presented in a tabular form (c.f. Fig. 1) and in full distributions of posterior density (Fig. 2). It is worth emphasizing that339

Bayesian inferences focus less on the point estimate of an effect and its associated quantile interval, but more on the whole340

posterior density as shown in Fig. 2 that offers more detailed information about the effect uncertainty. Unlike the whole341

brain analysis in which the results are typically reported as the tips of icebergs above the water, posterior density reveals342

the spread, shape and skewness regardless of the statistical evidence. In addition, one does not have to stick to a single343

harsh thresholding when deciding a criterion on the ROIs for discussion; for instance, even if an ROI lies outside of, but344

close to, the 95% quantile interval (e.g., dmMPFC and vmPFC in Figures 1 and 2), it can still be reported and discussed as345
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ROI
result ToMI effect standard error 2.5% 5% 95% 97.5%

GLM BML GLM BML GLM BML GLM BML GLM BML GLM BML
R PCC 0.025 0.018 0.010 0.006 0.005 0.008 0.008 0.009 0.041 0.028 0.045 0.030
R TPJp 0.018 0.025 0.009 0.007 -0.000 0.012 0.003 0.014 0.034 0.036 0.037 0.038
R Insula -0.004 0.002 0.006 0.006 -0.015 -0.010 -0.014 -0.008 0.006 0.011 0.007 0.013
L IPL 0.020 0.014 0.008 0.006 0.005 0.003 0.008 0.004 0.033 0.024 0.035 0.026
L SFG 0.011 0.008 0.008 0.006 -0.004 -0.003 -0.001 -0.001 0.024 0.017 0.027 0.019

R IFG (BA45) -0.006 0.000 0.007 0.005 -0.021 -0.011 -0.019 -0.009 0.006 0.008 0.008 0.010
R IFG (BA9) -0.002 0.002 0.005 0.005 -0.012 -0.009 -0.010 -0.007 0.006 0.011 0.008 0.012

L MTG -0.001 0.004 0.009 0.005 -0.019 -0.007 -0.016 -0.005 0.013 0.013 0.016 0.015
L CG -0.004 -0.003 0.007 0.005 -0.017 -0.014 -0.015 -0.011 0.007 0.006 0.009 0.008
L IFG -0.002 0.000 0.005 0.005 -0.012 -0.011 -0.010 -0.009 0.007 0.009 0.009 0.011
ACC 0.002 0.002 0.007 0.005 -0.012 -0.008 -0.009 -0.006 0.014 0.011 0.016 0.013
SGC 0.006 0.004 0.006 0.005 -0.007 -0.007 -0.005 -0.005 0.016 0.013 0.018 0.014

PCC/PrC 0.017 0.012 0.009 0.005 -0.001 0.001 0.002 0.003 0.032 0.021 0.035 0.023
dmMPFC 0.014 0.010 0.009 0.005 -0.004 -0.001 -0.001 0.001 0.029 0.019 0.032 0.021
L TPJ 0.018 0.015 0.008 0.005 0.001 0.005 0.004 0.007 0.031 0.025 0.034 0.026
L vBG 0.001 0.003 0.005 0.005 -0.009 -0.008 -0.007 -0.006 0.010 0.011 0.012 0.012
R vBG 0.001 0.003 0.005 0.005 -0.009 -0.008 -0.007 -0.006 0.009 0.012 0.011 0.014

L aMTS/aMTG 0.022 0.013 0.009 0.006 0.005 0.003 0.007 0.005 0.036 0.023 0.039 0.025
R Amy/Hippo -0.003 0.002 0.006 0.005 -0.014 -0.009 -0.012 -0.007 0.006 0.011 0.008 0.012
L Amy/Hippo -0.004 0.001 0.006 0.005 -0.016 -0.010 -0.014 -0.008 0.005 0.010 0.007 0.012

vmPFC 0.015 0.009 0.008 0.006 -0.001 -0.001 0.002 0.000 0.029 0.019 0.031 0.021

The table columns with the label GLM are the results from 21 separate GLMs (14); however, the GLM (15) with pooled variance and flat
priors rendered very similar inferences (not shown). The percentages show the percentile confidence intervals for the conventional GLM with no
pooling and the quantile intervals for BML, respectively. Rows in green indicate that the corresponding effect lies beyond the positive domain of
the 95% quantile interval under BML, revealing strong evidence for the behavior effect; rows in yellow indicate that the corresponding effect lies
beyond the positive domain of the 90% quantile interval under BML (or the 95% quantile interval if the effect sign is a priori known), revealing
moderate evidence for the behavior effect. The conventional ROI-based GLM revealed a similar pattern but with different effect estimates and
distributions due to the isolated treatment among the ROIs; however, none of the 21 ROIs would survive FWE correction under NHST. Unlike
the popular practice of sharp thresholding under NHST, more customized quantile intervals (e.g., 10%, 50% and 90%), if desirable, can be added
in the final reporting in order to make corresponding inferences.

The same results in the table are shown in box plots. The ToMI effect is plotted with the horizontal black bar in the middle of each box as the
mean for GLM or median for BML; each box (or whisker pair) represets the 90% (or 95%) confidence interval for GLM (dashed) or quantile
interval for BML (solid). Among all ROIs except R TPJp, the shrinkage or pooling effect of BML is evident in the sense that the effects are
dragged from the extremes to the center.

Figure 1: Comparisons of results between the conventional GLM and BML
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Figure 2: Posterior density distributions based on 2000 draws from BML. The vertical blue line indicates zero ToMI effect,
yellow and green tails mark the 90% and 95% quantile intervals, respectively, and the ROIs with strong evidence of ToMI
effect can be identified as the blue line being within the color tails. Compared to the conventional confidence interval
that is flat and inconvenient to interpret, the posterior density provides much richer information about each effect such as
spread, shape and skewness.
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long as all the details are revealed. Such flexibility and transparency are difficult to navigate or maneuver through cluster346

thresholding at the whole brain level. As a counterpart to NHST, a probability metric could still be provided for each347

effect under BML in the sense as illustrated in Table 5; however, we opt not to do so for two reasons: 1) such a probability348

measure could be easily misinterpreted in the NHST sense, and, more importantly, 2) it is the predictive intervals shown349

in Fig. 1 and the complete posterior distributions illustrated in Fig. 2, not the single probabilities, that fully characterize350

the posterior distribution, providing richer information than just binary (“in or out”) thresholding.351

Interestingly, those four regions (L IPL, L TPJ, R PCC, PCC/PrC) that passed the FWE correction at the voxel-352

wise p-cutoff of 0.005 (Table 2) in the whole brain analysis were confirmed with the ROI-based BML (Figures 1 and 2).353

Moreover, another four regions (L aMTS/aMTG, R TPJp, vmPFC, dmPFC) revealed some evidence of ToMI effect under354

BML. In contrast, these four regions did not stand out in the whole brain analysis after the application of FWE correction355

at the cluster level regardless of the voxel-wise p-threshold (Table 2), even though they would have been evident if the356

cluster size requirement were not as strictly imposed.357

Discussion358

Applied to the neuroimaging context, BML adopts partial pooling and can be considered as a trade-off between two359

extreme modeling choices (Appendix D): complete pooling and no pooling. Complete pooling assumes no variations among360

the entities (voxels, regions, or surface nodes); that is, all entities are assumed to be identical or homogeneous. Because361

of the omnipresence of regional heterogeneity in the brain, nobody would be interested in such a modeling strategy in362

neuroimaging, but it serves here as an extreme anchor for the convenience of comparison. In contrast, no pooling, currently363

adopted in massively univariate modeling, fully trusts the data, and offers the best fit separately for each individual entity364

to the current data at hand. As a consequence, each entity is considered autonomous and independent with each other in365

the analytical model. To some extent, the current approaches pool the information across the neighboring voxels in the step366

of controlling FPR through clusterization. However, there are two huge disadvantages associated with no pooling: it carries367

the risk of overfitting, poor inference or prediction for future data; and, to control for multiplicity and overconfidence, the368

current approaches compromise in efficiency by paying the price in over-penalizing small regions through leveraging the369

spatial extent.370

Through an adaptively regularizing prior (e.g., Gaussian distribution among brain regions), partial pooling achieves a371

counterbalance between homogenization and autonomy. Specifically, BML treats each entity as a substantiation generated372

through a random process that adaptively regularizes the entities, and it conservatively pools the effect of each entity373

toward the center. In other words, the methodology sacrifices model performance in the form of a poorer fit in samples374

(observed data) for the sake of better interfere and better fit (prediction) out of samples (future data) through partial375

pooling (McElreath, 2016). Therefore, BML may fit each region individually worse than univariate GLM, but BML excels376

in collective fitting and overall model performance. It is this counterbalance through regularization that effectively controls377

the errors of incorrect sign and incorrect magnitude; and as a byproduct, BML leverages the multiplicity issue and equally378

treats all regions purely based on their signal strength, regardless of their spatial size.379

Current approaches to correcting for FPR380

Arbitrariness is involved in the multiple testing correction of parametric methods. In the conventional statistics frame-381

work, the thresholding bar ideally plays the role of winnowing the wheat (true effect6) from the chaff (random noise), and382

a p-value of 0.05 is commonly adopted as a benchmark for comfort in most fields. However, one big problem facing the383

correction methods for multiple testing is the arbitrariness surrounding the thresholding, in addition to the arbitrariness of384

0.05 itself. Both Monte Carlo simulations and random field theory start with a voxel-wise probability threshold (e.g., 0.01,385

0.005, 0.001) at the voxel (or node) level, and a spatial threshold is determined in cluster size so that overall FPR can be386

properly controlled at the cluster level. If clusters are analogized as islands, each of them may be visible at a different sea387

level (voxel-wise p-value). As the cluster size based on statistical filtering plays a leveraging role, with a higher statistical388

threshold leading to a smaller cluster cutoff, a neurologically or anatomically small region can only gain ground with a low389

p-value while large regions with a relatively large p-value may fail to survive the criterion. Similarly, a lower statistical390

threshold (higher p) requires a higher cluster volume, so smaller regions have little chance of reaching the survival level.391

6Needless to say, the concept of true effect only makes sense under the current model framework at hand, and may not hold once the model
is revised.
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(c) GLM cross-validation: Q-Q plot (uniform)
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(d) BML cross-validation: Q-Q plot (uniform)

Figure 3: Model performance comparisons through posterior predictive checks and cross validations between conventional
univariate GLM (a and c) and BML (b and d). The subfigures a and b show the posterior predictive density overlaid with
the raw data from the 124 subjects at the 21 ROIs for GLM and BML, respectively: solid black curve is the raw data
at the 21 ROIs with linear interpolation while the fat curve in light blue is composed of 100 sub-curves each of which
corresponds to one draw from the posterior distribution based on the respective model. The differences between the two
curves indicate how well the respective model fits the raw data. BML fitted the data better than GLM at the peak and
both tails as well as the skewness because pooling the data from both ends toward the center through shrinkage clearly
validates our adoption of BML. The subfigures c and d contrast GLM and BML through cross-validation with leave-one-
out log predictive densities through the calibration of marginal predictions from 100 draws; the calibration is assessed by
comparing probability integral transformation (PIT) checks to the standard uniform distribution. The diagonal dished line
indicates a perfect calibration: there are some suboptimal calibration for both models, but BML is clearly a substantial
improvement over GLM. To simulate the posterior predictive data for the conventional ROI-based approach (a and c), the
Bayesianized version of GLM (15) was adopted with a noninformative uniform prior for the population parameters.
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In addition, this arbitrariness in statistical threshold at the voxel level poses another challenge for the investigator: one392

may lose spatial specificity with a low statistical threshold since small regions that are contiguous may get swamped by393

the overlapping large spatial extent; on the other hand, sensitivity may have to be compromised for large regions with394

low statistic values when a high statistical threshold is chosen. A recent critique on the rigor of cluster formation through395

parametric modeling (Eklund et al., 2016) has resulted in a trend to require a higher statistical thresholding bar (e.g., with396

the voxel-wise threshold below 0.005 or even 0.001); however, the arbitrariness persists because this trend only shifts the397

probability threshold range.398

Permutation testing is limited in modeling capability. For example, it shares the same limitations as univariate GLM399

in handling missing data and sophisticated random-effects structures; in addition, it does not have an effective approach to400

taking into consideration the reliability of effect estimates. Furthermore, it has its share of arbitrariness in multiple testing401

correction too. As an alternative to parametric methods, an early version of permutation testing (Nichols and Holmes,402

2001) bears similar arbitrary issues. It starts with the construction of a null distribution through permutations in regard to403

a maximum statistic (either maximum testing statistic or maximum cluster size based on a predetermined threshold for the404

testing statistic). The original data are assessed against the null distribution, and the top winners at a designated rate (e.g.,405

5%) among the testing statistic values or clusters will be declared as the surviving ones. While the approach is effective in406

maintaining the nominal FWE level, two problems are embedded with the strategy. First of all, the spatial properties are407

not directly taken into consideration in the case of maximum testing statistic. For example, an extreme case to demonstrate408

the spatial extent issue is that a small cluster (or even a single voxel) might survive the permutation testing as long as its409

statistic value is high enough (e.g., t(20) = 6.0) while a large cluster with a relatively small maximum statistic value (e.g.,410

t(20) = 2.5) would fail to pass the filtering. The second issue is the arbitrariness involved in the primary thresholding411

for the case of maximum cluster size: a different primary threshold may end up with a different set of clusters. That is,412

the reported results may likely depend strongly on an arbitrary threshold. Addressing these two problems, a later version413

of permutation testing (Smith and Nichols, 2009) takes an integrative consideration between signal strength and spatial414

relatedness, and thus solves both problems involving the earlier version of permutation testing7. Such an approach has415

been implemented in programs such as Randomise and PALM in FSL using threshold-free cluster enhancement (TFCE)416

(Smith and Nichols, 2009) and in 3dttest++ in AFNI using equitable thresholding and clusterization (ETAC) (Cox, 2018).417

Nevertheless, the adoption of permutations in neuroimaging, regardless of the specific version, is not directly about the418

concern of distribution violation as in the classical nonparametric setting (in fact, a pseudo-t value is still computed at419

each voxel in the process); rather, it is the randomization among subjects in permutations that creates a null distribution420

against which the original data can be tested at the whole brain level.421

We argue that spatial size as a correction leverage unnecessarily pays the cost of lower identification power to achieve422

the nominal false positive level. All of the current correction methods, parametric and nonparametric, are still meant to423

use spatial extent or the combination of spatial extent and signal strength as a filter to control the overall FPR at the whole424

brain level. They all share the same hallmark of sharp thresholding at a preset acceptance level (e.g., 5%) under NHST, and425

they all use spatial extent as a leverage, penalizing regions that are anatomically small and rewarding large smooth regions426

(Cremers et al., 2017). The combination of signal strength and spatial extent adopted in the recent permutation methods427

such as TFCE and ETAC are advantageous in addressing the issue of arbitrariness of primary thresholding in the cluster-428

based correction methods and the primary permutation approach. Nevertheless, such a method of “extent and height” still429

discriminates spatially small regions, even though slightly less so. For instance, between two brain regions with the same430

signal strength, the anatomically larger one would be easier to pass the current approaches including TFCE and ETAC431

than its smaller counterpart; between one case with one isolated region and another with two or more contiguous regions,432

the former may fail to pass the current filtering methods even with a stronger signal strength. Due to the unforgiving433

penalty of correction for multiple testing, some workaround solutions have been adopted by focusing the correction on a434

reduced domain instead of the whole brain. For example, the investigator may limit the correction domain to gray matter435

or regions based on previous studies. Putting the justification for these practices aside, accuracy is a challenge in defining436

such masks; in addition, spatial specificity remains a problem, shared by the typical whole brain analysis, although to a437

lesser extent.438

7A single voxel is still possible, but much less likely, to survive this correction approach.
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Questionable practices of correction for FPR under NHST439

Univariate GLM is inefficient in handling neuroimaging data. It may work reasonably well if the following two conditions440

can be met: 1) no multiple testing, and 2) high signal-to-noise ratio (strong effect and high precision measurement) as441

illustrated in the lower triangular part of the table or right side of the curves in Fig. 4 (Appendix B). However, neither442

of the two conditions is likely satisfied with typical neuroimaging data. Due to the stringent requirements of correction443

for multiple testing across thousands of resolution elements in neuroimaging, a daunting challenge facing the community444

is the power inefficiency or high type II errors under NHST. Even if prior information is available as to which ROIs are445

potentially involved in a study, an ROI-based univariate GLM would still be obliged to share the burden of correction for446

multiplicity equally and agnostically to any such knowledge. The modeling approach usually does not have the luxury to447

survive the penalty, as shown with our experimental data in the table of Fig. 1, unless only a few ROIs are included in448

the analysis. Furthermore, with many low-hanging fruits with relatively strong signal strength (e.g., 0.5% signal change or449

above) having been largely plucked, the typical effect under investigation nowadays is usually subtle and likely small (e.g.,450

in the neighborhood of 0.1% signal change). Compounded with the presence of substantial amount of noise and suboptimal451

modeling (e.g., ignoring the HDR shape subtleties), detection power is usually low. It might be counterintuitive, but one452

should realize that the noisier or more variable the data, the less one should be confident about any inferences based on453

statistical significance, as illustrated with the type S and type M errors in Figure 5 (Appendix B). With fixed threshold454

correction approaches, small regions are hard to funnel through the FPR criterion even if their effect magnitude is the455

same as or even higher than those larger regions. Even for approaches that take into consideration both spatial extent and456

effect magnitude (TFCE, ETAC), small regions remain disadvantaged when their effect magnitude is at the same level as457

their larger counterparts.458

Furthermore, dichotomous thinking and decision-making under NHST are usually not fully compatible with the un-459

derlying mechanism under investigation. Current knowledge regarding brain activations has not reached a point where460

one can make accurate dichotomous claims as to whether a specific brain region under a condition is activated or not;461

lack of underlying “ground truth” has made it difficult to validate any but the most basic models. The same issue can be462

raised about the binary decision as to whether the response difference under two conditions is either the same or different.463

Therefore, a pragmatic mission is to detect activated regions in terms of practical, instead of statistical, significance. The464

conventional NHST runs against the idealistically null point H0, and declares a region having no effect based on statistical465

significance with a safeguard set for type I error. When the power is low, not only reproducibility will suffer, but also466

the chance of having an incorrect sign for a statistically significant effect be substantial (Fig. 4 and Fig. 5). Only when467

the power reaches 30% or above does the type S error rate become low. Publication bias due to the thresholding funnel468

contributes to type S and type M errors as well. The sharp thresholding imposed by the widely adopted NHST strategy469

uses a single threshold through which a high-dimension dataset is funneled. An ongoing debate has been simmering for a470

few decades regarding the legitimacy of NHST, ranging from cautionary warning against misuses of NHST (Wasserstein471

and Lazar, 2016), to tightening the significance level from 0.05 to 0.005 (Benjamin et al., 2017), to totally abandoning472

NHST as a gatekeeper (McShare et al., 2017; Amrhein and Greenland, 2017). The poor controllability of type S and473

type M errors is tied up with widespread problems across many fields. It is not a common practice nor a requirement in474

neuroimaging to report the effect estimates; therefore, power analysis for a brain region under a task or condition is largely475

obscure and unavailable, let alone the assessment of type S and type M errors.476

Lastly, reproducibility may deteriorate through inefficient modeling and dichotomous inferences. Relating the discussion477

to the neuroimaging context, the overall or global FPR is the probability of having data as extreme as or more extreme478

than the current result, under the assumption that the result was produced by some “random number generator,” which is479

built into algorithms such as Monte Carlo simulations, random field theory, and randomly shuffled data as pseudo-noise in480

permutations. It boils down to the question: are the data truly pure noise (even though spatially correlated to some extent)481

in most brain regions? Since controlling for FPR hinges on the null hypothesis of no effect, p-value itself is a random variable482

that is a nonlinear continuous function of the data at hand, therefore it has a sampling distribution (e.g., uniform(0,1)483

distribution if the null model is true). In other words, it might be under-appreciated that even identical experiments484

would not necessarily replicate an effect that is dichotomized in the first one as statistically significant (Lazzeroni et485

al., 2016). The common practice of reporting only the statistically significant brain regions and comparing to those486

nonsignificant regions based on the imprimatur of statistic- or p-threshold can be misleading: the difference between a487

highly significant region and a nonsignificant region could simply be explained by pure chance. The binary emphasis on488

statistical significance unavoidably leads to an investigator only focusing on the significant regions and diverting attention489
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away from the nonsignificant ones. More importantly, the traditional whole brain analysis usually leads to selectively490

report surviving clusters conditional on statistical significance through dichotomous thresholding, potentially inducing491

type M errors, biasing estimates with exaggerated effect magnitude, as illustrated in Fig. 5. Rigor, stringency, and492

reproducibility are lifelines of science. We think that there is more room to improve the current practice of NHST and to493

avoid information waste and inefficiency. Because of low power in FMRI studies and the questionable practice of binarized494

decisions under NHST, a Bayesian approach combined with integrative modeling offers a platform to more accurately495

account for the data structure and to leverage the information across multiple levels.496

What Bayesian modeling offers497

Bayesian inferences are usually more compatible with the research, not null, hypothesis. Almost all statistics consumers498

(including the authors of this paper) were a priori trained within the conventional NHST paradigm, and their mindsets499

are usually familiar with and entrenched within the concept and narratives of p-value, type I error, and dichotomous500

interpretations of results. Out of the past shadows cast by the theoretical and computation hurdles, as well as the image of501

subjectivity, Bayesian methods have gradually emerged into the light. One direct benefit of Bayesian inference, compared502

to NHST, is its concise, intuitive and straightforward interpretation, as illustrated in Table 5. For instance, among its503

controversies (Morey et al., 2016), the conventional confidence interval weighs equally all possible values a parameter504

could take within the interval, regardless of how implausible some of them are; in contrast, the quantile interval under505

Bayesian framework is more subtly expressed through the corresponding posterior density (Fig. 2). Even though the506

NHST modeling strategy literally falsifies the straw man H0, the real intention is to confirm the alternative (or research)507

hypothesis through rejecting H0; in other words, the falsification of H0 is only considered an intermediate step under508

NHST, and the ultimate goal is the confirmation of the intended hypothesis. In contrast, under the Bayesian paradigm,509

the investigator’s hypothesis is directly placed under scrutiny through incorporating prior information, model checking and510

revision. Therefore, the Bayesian paradigm is more fundamentally aligned with the hypothetico-deductivism axis along511

the classic view of falsifiability or refutability by Karl Popper (Gelman and Shalizi, 2013).512

Table 5: Interpretation differences between NHST and Bayesian framework

Probability p Effect Interval [L,U ]

If H0 is true, the probability of having the If the study is exactly repeated an infinite number
current result or more extreme is p (based on what of times, the percentage of those confidence

NHST would have occurred under other possible datasets); intervals will cover the true effectis 1− p;
e.g., P (|T (y)| > tc|easy = difficult) = p, where e.g., P (L ≤ easy− difficult ≤ U) = 1− p,

T (y) is a statistic (e.g., Student’s t) based on data y where “easy - difficult” is treated as being fixed
and tc is a threshold. while L and U are random.

The probability of having the current result being The probability that the effect falls in the
different from zero is p (given the dataset); e.g., predictive interval is 1− p (given the data);

Bayesian P (easy− difficult < L or easy− difficult > U |y) = p, e.g., P (L ≤ easy− difficult ≤ U |y) = 1− p, where
where L and U are lower and upper bounds of the “easy - difficult” is considered random while

(1− p)100% quantile interval. L and U are known conditional on data y.

In addition to interpretational convenience, Bayesian modeling is less vulnerable to the amount of data available and513

to the issue of multiple testing. Conventional statistics heavily relies on large sample size and asymptotic property; in514

contrast, Bayesian inferences bear a direct interpretation conditional on the data regardless of sample size. Practically515

speaking, should we fully “trust” the effect estimate at each ROI or voxel at its face value? Some may argue that the effect516

estimate from the typical neuroimaging individual or population analysis has the desirable property of unbiasedness, as517

asymptotically promised by central limit theory. However, in reality the asymptotic behavior requires a very large sample518

size, a luxury difficult for most neuroimaging studies to reach. As the determination of a reasonable sample size depends on519

signal strength, brain region, and noise level, the typical sample size in neuroimaging tends to get overstretched, creating520

a hotbed for a low power situation and potentially high type S and type M errors. Another fundamental issue with the521

conventional univariate modeling approach in neuroimaging is the two-step process: first, pretend that the voxels or nodes522

are independent with each other, and build a separate model for each spatial element; then, handle the multiple testing523

issue using spatial relatedness to only partially, not fully, recoup the efficiency loss. In addition to the conceptual novelty524

for those with little experience outside the NHST paradigm, BML simplifies the traditional two-step workflow with one525

integrative model, fully shunning the multiple testing issue.526
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Through integrative incorporation across ROIs, the BML approach renders conservative effect estimation in place of527

controlling FPR. Unlike the p-value under NHST, which represents the probability of obtaining the current data generated528

by an imaginary machinery (e.g., assuming that no effect exists), a posterior distribution for an effect under the Bayesian529

framework directly and explicitly shows the uncertainty of our current knowledge conditional on the current data and the530

prior model. From the Bayesian perspective, we should not put too much faith in point estimates. In fact, not only should531

we not fully trust the point estimates from GLM with no pooling, but also should we not rely too much on the centrality532

(median, mean) of the posterior distribution from a Bayesian model. Instead, the focus needs to be placed more on the533

uncertainty, which can be visualized through the posterior distributions or characterized by the quantile intervals of the534

posterior distribution if summarization is required. Specifically, BML, as demonstrated here with the ROI data, is often535

more conservative in the sense that it does not “trust” the original effect estimates as much as GLM, as shown in Fig. 1;536

additionally, in doing so, it fits the data more accurately than the ROI-based GLM (Table 4(b) and Fig. 3). Furthermore„537

the original multiple testing issue under the massively univariate platform is deflected within one unified model: it is the538

type S, not type I, errors that are considered crucial and controlled under BML. Even though the posterior inferences at539

the 95% quantile interval in our experimental data were similar to the statistically significant results at the 0.05 level under540

NHST, BML in general is more statistically conservative than univariate GLM under NHST, as shown with the examples541

in Gelman et al. (2012).542

We reiterate that the major difference is the assumption about the brain regions: noninformitive flat prior for the543

conventional GLM versus the Gaussian assumption for BML. With a uniform prior, all values on the real axis are equally544

likely; therefore, no information is shared across regions under GLM. On the other hand, it is worth mentioning that the545

Gaussian assumption for the priors including the likelihood under a Bayesian model is based on two considerations: one546

aspect is convention and pragmatism, and the other aspect is the fact that, per maximum entropy principle, the most547

conservative distribution is Gaussian if the data have a finite variance (McElreath, 2016). However, a Bayesian model548

tends to be less sensitive to the model (likelihood or prior for the data in Bayesian terminology); in other words, even549

though the true data-generating process is always unknown, a model is only a convenient framework or prior knowledge550

to start with the Bayesian updating process so that a Bayesian model is usually less vulnerable to assumption violations.551

In contrast, statistical inferences with conventional approaches heavily rely on the sampling distribution assumptions.552

Through adaptive regularization, BML achieves a goal to trade off poorer fit in sample for better inference and improved553

fit out of sample (McElreath, 2016); the amount of regularization is learned from the data through partial pooling that554

embodies the similarity assumption of effects among the brain regions. From the NHST perspective, BML can still commit555

type I errors, and its FPR could be higher under some circumstances than, for example, its GLM counterpart. Such type I556

errors may sound alarmingly serious; however, the situation is not as severe as its appearance for two reasons: 1) the concept557

of FPR and the associated model under NHST are framed with a null hypothesis, which is not considered pragmatically558

meaningful in the Bayesian perspective; and 2) in reality, inferences under BML most likely have the same directionality as559

the true effect because type S errors are well controlled across the board under BML (Gelman and Teulinckx, 2000). Just560

consider which of the following two scenarios is worse: (a) when power is low, the likelihood under the NHST to mistakenly561

infer that the BOLD response to easy condition is higher than difficult could be sizable (e.g., 30%), and (b) with the type562

S error rate controlled below, for example, 3.0%, the BML might exaggerate the magnitude difference between difficult and563

easy conditions by, for example, 2 times. While not celebrating the scenario (b), we expect that most researchers would564

view the scenario (a) as more problematic.565

Prior assignment is an intrinsic component of Bayesian modeling. As the priors are non-informative for the parameters566

of the BML models considered here at the population level, there is no extra information injected. Therefore, one somewhat567

controversial aspect of Bayesian modeling is the adoption of a prior for each hyperparameter at the entity level, and that the568

prior is meshed with the data and gets updated into the posterior distribution. Some may consider that an Achilles’ heel of569

Bayesian modeling is its subjectivity with respect to prior selection at the entity level. First of all, we would argue that, to570

start with, every model, Bayesian or non-Bayesian, is a prior or likelihood function in the sense that the analyst presumes571

a distribution for the data (e.g., Gaussian distribution in the conventional GLMs (1), (2), and (3)). Secondly, weakly572

informative priors are even routinely adopted by conventional statistics in approaches such as penalized likelihood in ridge573

regression and LASSO. Priors are chosen, evaluated and revised just as any components and assumptions in the model.574

The inherent subjectivity of BML is no more than are model assumptions (e.g. Gaussian distribution) for convectional575

statistics as well as different opinions of analytical approaches, different outliers handling methods and processing steps576

in neuroimaging. Furthermore, priors are applied at the epistemological, not ontological level (McElreath, 2016); with no577

intention to get tangled in the epistemological roots or the philosophical debates of subjectivity versus objectivity, we simply578
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divert the issue to the following suggestion (Gelman and Hennig, 2017): replacing the term “subjectivity” with “multiple579

perspectives and context dependence,” and, in lieu of “objectivity,” focusing on transparency, consensus, impartiality, and580

correspondence to observable reality. Therefore, our focus here is the pragmatic aspect of Bayesian modeling: with prior581

distributions, we can make inferences for each ROI under BML, which cannot be achieved under LME.582

Prior selection in Bayesian modeling is usually well justified. Since noninformative priors are adopted for population583

effects here, the only impact of prior information incorporated into BML comes from two aspects: the distributional584

assumptions about those entities such as subjects and ROIs, and the hyperpriors. However, the rationale for the Gaussian585

priors of entities is not more far-fetched than that for the Gaussian assumption of cross-subject distribution in the typical586

GLM adopted in neuroimaging group analysis. As for the hyperpiors, weakly informative priors basically play the role of587

numerical regularization: when the amount of data is moderate or large, these conservative priors levy a negligible effect on588

the final inferences; on the other hand, when the data do not contain enough information for robust inferences, the weakly589

informative priors prevent the distributions from becoming unsupportively dispersive. Specifically, for simple models such590

as Student’s t-test and GLM, Bayesian approach renders similar inferences if noninformative priors are assumed. On the591

surface a noninformative prior does not “artificially” inject much “subjective” information into the model, and should be592

preferred. In other words, it might be considered a desirable property from the NHST viewpoint, since noninformative593

priors are independent of the data. Because of this “objectivity” property, one may insist that noninformative priors should594

be used all the time. Counterintuitively, a noninformative prior may become so informative that it could cause unbounded595

damage (Gelman et al., 2017). If we analyze the r ROIs individually as in the r GLMs (14), the point estimate for each596

effect θj is considered stationary, and we would have to correct for multiple testing due to the fact that r separate models are597

fitted independently. Bonferroni correction would likely be too harsh, which is the major reason that ROI-based analysis is598

rarely adopted in neuroimaging except for effect verification or graphic visualization. On the other hand, the conventional599

approach with the r GLMs (14) is equivalent to the BML (17) by a priori assuming an improper flat prior for θj with the600

cross-ROI variability τ2 = ∞; that is, each effect θj can be any value with equal likelihood within (−∞,∞). In the case601

of BOLD response, it is not necessarily considered objective to adopt a noninformative priori such as uniform distribution602

when intentionally ignoring the prior knowledge. In fact, we do have the prior knowledge that the typical effect from a603

3T scanner has the same scale and lies within, for example, (−4, 4) in percent signal change; this commonality can be604

utilized to calibrate or regularize the noise, extreme values, or outliers due to pure chance or unaccounted-for confounding605

effects (Gelman et al., 2012), which is the rationale for our prior Gaussian assumption for both subjects and ROIs. A606

flat noninformative prior or no investigator choice does not necessarily mean objectivity. Even for an effect for a covariate607

(e.g., the associate between behavior and BOLD response), it would be far-fetched to assume that τ2 has the equal chance608

between, for example, 0 and 1010. Another example of information waste under NHST is the following. Negative or zero609

variance can occur in an ANOVA model while zero variance may show up in LME. Such occurrences are usually due to610

the full reliance on the data or a parameter boundary, and such direct estimates are barely meaningful: an estimate of611

cross-subject variability λ2 = 0 in (17) indicates that all subjects have absolutely identical effects. However, a Bayesian612

inference is a tug of war between data and priors, and therefore negative or zero variance inferences would not occur because613

those scenarios from the data are regularized by the priors, as previously shown in ICC computations that are regularized614

by a Gamma prior for the variance components (Chen et al., 2017c).615

In typical neuroimaging data with reasonable number of subjects and moderate number of ROIs, the weakly informative616

priors for scaling parameters usually play a nudging role. In general, when there is enough data, weakly informative priors617

are usually drowned out by the information from the data; on the other hand, when data are meager (e.g., with small or618

moderate sample size), such priors can play the role of regularization (Gelman et al., 2017) so that smoother and more619

stable inferences could be achieved than would be obtained with a flat prior. In addition, a weakly informative prior for620

BML allows us to make reasonable inferences at the region level while model quality can be examined through tools such621

as posterior predictive check and LOO cross-validation. Therefore, if we do not want to waste such prior knowledge for an622

effect bounded within a range in the brain, the commonality shared by all the brain regions can be incorporated into the623

model through a weakly informative prior and the calibration of partial pooling among the ROIs, thus eliding the step of624

correcting for multiple testing under NHST.625

To summarize, we recommend that three types of priors be adopted for ROI-based BML: 1) Gaussian distribution for626

the response variable (or input data) and effects at the entity level such as ROIs and subjects, 2) uninformative prior627

for the effects (e.g., intercept and slopes) at the population level, and 3) weekly informative priors for scaling parameters628

(e.g., variances). Such a prior setting should be able to handle the typical BML modeling in neuroimaging unless the629

amount of data is overly meager (e.g., a few ROIs or subjects only). With the typical neuroimaging dataset, our prior630
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recommendation would have negligible impact on the population effect estimates as shown in the comparisons between631

LME and BML (Table 4(a)). However, it is worth noting that the effects of interest here are not those at the population632

level under the LME and BML framework, but rather those effects at the entity (i.e. ROI) level in the current context.633

We note that the experiment dataset employed here to demonstrate BML applications happens to have more than 100634

subjects. However, such a large sample size is not a prerequisite for BML. A larger sample would lead to more robust635

inferences (as it would in other approaches); however, BML does not require more subjects than the rule of thumb with636

typical neuroimaging group model such as GLM in terms of sample size.637

Progress in Bayesian computations is paving the way for more advanced modeling opportunities. Bayesian algorithms638

have traditionally been burdened with meticulous and time consuming computations, making their adoption for wide639

applications difficult and impractical for multilevel models even with a dataset of small or moderate size. However, the640

situation has been substantially ameliorated by the availability of multiple software tools such as Stan, and the rapid641

development in Stan over the past few years has promoted the wide adoption of Bayesian modeling. In particular, Stan642

adopts static HMC Samplers and its extension, NUTS, and it renders less autocorrelated and more effective draws for the643

posterior distributions, achieving quicker convergence than the traditional Bayesian algorithms such as Metropolis-Hastings,644

Gibbs sampling, and so on. With faster convergence and high efficiency, it is now feasible to perform full Bayesian inferences645

for BML with datasets of moderate size.646

Advantages of ROI-based BML647

Bayesian modeling has long been adopted in neuroimaging at the voxel or node level (e.g., Woolrich et al., 2004; Penny648

et al., 2005; Westfall et al., 2017; Eklund et al., 2017; Mejia et al., 2017); nevertheless, correction for FWE would still649

have to be imposed as part of the model or as an extra step. In the current context, we formulate the data generation650

mechanism for each dataset through a progressive triplet of models on a set of ROIs: GLM → LME → BML. The strength651

of multilevel modeling lies in its capability of stratifying the data in a hierarchical or multilevel structure so that complex652

dependency or correlation structures can be properly accounted for coherently within a single model. Specifically applicable653

in neuroimaging is a crossed or factorial layout between the list of ROIs and subjects as shown in the LME equation (4)654

and its Bayesian counterpart (5). Our adoption of BML, as illustrated with the demonstrative data analysis, indicates that655

BML holds some promise for neuroimaging and offers the following advantages over traditional approaches:656

1) As BML and LME usually share a corresponding modeling structure, BML can handle data structures involved in657

the conventional models that are subsumed under LME such as Student’s t-tests, ANOVA, regression, ANCOVA and GLM.658

For example, missing data can be handled as long as the missingness can be considered missing at random. Furthermore,659

BML is superior to LME in dealing with complicated data structures. For example, the number of parameters under660

LME with a sophisticated variance-variance structure could be high, leading to overfitting and convergence failure with the661

maximum likelihood algorithm; in contrast, the numerical regularization under BML may help overcome the overfitting662

and convergence issues.663

2) Compared to the conventional GLM, BML achieves a better model performance and higher predictive accuracy664

through partial pooling, a trade-off between underfitting with complete pooling and overfitting with no pooling. Specifically,665

BML is assessed with data through adaptive regularization with nudges from the prior information: it learns from the data666

and borrows information across ROIs to improve the quality of individual estimates and posterior distributions with the667

assumption of similarity among the regions.668

3) Instead of separately correcting for multiple testing, BML incorporates multiple testing as part of the model by669

assigning a prior distribution among the ROIs (i.e., treating ROIs as random effects under the LME paradigm). In doing670

so, multiple testing is handled under the scaffold of the multilevel data structure by conservatively shrinking the original671

effect toward the center; that is, instead of leveraging cluster size or signal strength, BML leverages the commonality among672

ROIs.673

4) BML may achieve higher spatial specificity through efficient modeling. A statistically identified cluster through a674

whole brain analysis is not necessarily anatomically or functionally meaningful. In other words, a statistically identified675

cluster is not always aligned well with a brain region for diverse reasons such as “bleeding” effect due to contiguity among676

regions, and suboptimal alignment to the template space, as well as spatial blurring. In fact, such a cluster may overlap677

multiple brain regions or subregions; for example, with a large sample size (e.g., more 200 subjects), one may have678

difficulty in differentiating statistically identified regions within a large portion of the brain that all pass even a very679

stringent threshold (e.g., voxel-wise significance level of 10−10). In contrast, as long as a region can be a priori defined, its680
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statistical inference under BML is assessed by its signal strength relative to its peers, not by its spatial extent, providing681

an alternative to the whole brain analysis with more accurate spatial specificity.682

5) BML offers a flexible approach to dealing with double sidedness at the ROI level. When prior information about683

the directionality of an effect is available on some, but not all, regions (e.g., from previous studies in the literature), one684

may face the issue of performing two one-tailed t-tests at the same time in a blindfold fashion due to the limitation of the685

massively univariate approach. The ROI-based approach disentangles the complexity since the posterior inference for each686

ROI can be made separately.687

6) Model validation is a crucial facet of Bayesian framework. It is sometimes stated a model- or assumption-free688

approach is preferable to parametric methods, for example, with the argument that the p-value from permutation testing689

can be considered “exact.” However, it should be noted that “exactness” in this sense is a technical definition, requiring690

strict exchangeability and based on the assumption that the only possible values obtainable in an experiment were obtained.691

That is, the p-value’s “exactness” remains conditional on the current data. This emphasis on strict exactness under the692

NHST is questionable since the p-value itself is a random variable and the data are usually quite noisy; for instance, a693

repeated experiment under the same conditions would lead to a different “exact” p-value. Furthermore, uncertainty or694

precision information is usually not provided for the clusters identified from permutation testing (as well as other cluster-695

based approaches), and no model checking capability is offered either even though a linear model is indeed defined under696

the typical framework (including permutation testing) in neuroimaging.697

On the other hand, just as the Ptolemaic model served as a starting point for the supersession with the Heliocentric698

model of Copernicus, Galileo and Kepler, so does a parametric framework, regardless of its limitations, set up a scaffold that699

allows more modeling capabilities and targeted inferences. Those capabilities and inferences can be validated, criticized700

and incrementally improved. It may be trite to cite the famous quote of “all models are wrong” by George E. P. Box.701

However, the reality in neuroimaging is that model quality checks have historically been substantially lacking. When702

prompted, one may acknowledge the potential problems and pitfalls of a model, but it is much more common to see703

statistical analyses conducted as mechanical operations on assembly lines; when discussing and reporting results from the704

model, the investigator tends to treat the model as if it were always true and then discusses statistical inferences without705

realizing the implications or ramifications of a model that fits poorly or even conflicts with data. Building, comparing,706

tuning and improving models is a daunting task with whole brain data due to the high computational cost and visualization707

inconvenience. In contrast, model quality checking is an intrinsic part of Bayesian modeling process, such as providing708

quantile intervals for each effect estimate. The performance of each model and the room for improvement can be directly709

examined through graphical display as shown in Fig. 3.710

7) A full results reporting is possible for all ROIs under BML. The conventional NHST focuses on the point estimate of711

an effect supported with statistical evidence in the form of a p-value. In the same vein, typically the results from the whole712

brain analysis are displayed with sharp-thresholded maps or tables that only show the surviving clusters with statistic- or713

p-values. In contrast, as the focus under the Bayesian framework is on the predictive distribution, not the point estimate,714

of an effect, the totality of BML results can be summarized in a table as shown in Figures 1 and 2, listing the predictive715

intervals in various quantiles (e.g., 50%, 75%, and 95%), a luxury that whole brain analysis cannot provide. Such totality716

pits against the backdrop in which the effect estimates and their uncertainty are usually not reported in the whole brain717

analysis (Chen et al., 2017b). In contrast, BML modeling at the ROI level directly allows the investigator to present718

the effect estimate. More importantly, BML substantiates the reporting advantage not only because of modeling at the719

ROI level, but also due to the fact that the uncertainty associated with each effect estimate can demonstrated in a much720

richer fashion (e.g., explicit revealing the spread or skewness of the posterior distribution) through the posterior density721

distribution (Fig. 2) than the conventional confidence interval (1) that is flat and inconvenient to interpret. Furthermore,722

the full results reporting from BML would substantially improve future meta analysis, unlike the current meta analysis that723

is largely based on the anatomical coordinates of one voxel without taking into consideration the effect size information724

across studies.725

8) To some extent, the ROI-based BML approach can alleviate the arbitrariness involved in the thresholding with the726

current FPR correction practices. Even though BML allows the investigator to present the whole results for all regions,727

for example, in a table format, we do recognize that the investigator may prefer to focus the discussion on some regions728

with strong posterior evidence. In general, with all effects reported in totality, regardless of their statistical evidence, the729

decision of choosing which effects to discuss in a paper should be based on cost, benefit, and probabilities of all results730

(Gelman et al., 2014). Specifically for neuroimaging data analysis, the decision still does not have to be solely from the731

posterior distribution; instead, we suggest that the decision be hinged on the statistical evidence from the current data,732
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combined with prior information from previous studies. For example, one may still choose the 95% quantile interval as an733

equivalent benchmark to the conventional p-value of 0.05 when reporting the BML results. However, those effects with,734

say, 90% quantile intervals excluding 0 can still be discussed with a careful and transparent description, which can be used735

as a reference for future studies to validate or refute; or, such effects can be reported if they have been shown in previous736

studies. Moreover, rather than a cherry-picking approach on reporting and discussing statistically significant clusters in737

whole brain analysis8 showing neither the effect magnitude nor the corresponding uncertainty, we recommend a principled738

approach in results reporting in which the ROI-based results be reported in totality with a summary as shown in Figures739

1 and 2 and be discussed through transparency and soft, instead of sharp, thresholding. We believe that such a soft740

thresholding strategy is more healthy and wastes less information for a study that goes through a strenuous pipeline of741

experimental design, data collection, and analysis.742

Limitations of ROI-based BML and future directions743

ROIs can be specified through several ways depending on the specific study or information available regarding the744

relevant regions. For example, one can find potential regions involved in a task or condition including resting state from745

the literature. Such regions are typically reported as the coordinates of a “peak” voxel (usually highest statistic value746

within a cluster), from which each region could be defined by centering a ball with a radius of, e.g., 6 mm in the brain747

volume (or by projecting an area on the surface). Regions can also be located through (typically coordinate-based) meta748

analysis with databases such as NeuroSynth (http://www.neurosynth.org) and BrainMap (http://www.brainmap.org),749

with tools such as brain_matrix (https://github.com/fredcallaway/brain_matrix), GingerALE (http://brainmap.org/ale),750

Sleuth (http://brainmap.org/sleuth), and Scribe (http://www.brainmap.org/scribe) that are associated with the database751

BrainMap. Anatomical atlases (e.g., http://surfer.nmr.mgh.harvard.edu, http://www.med.harvard.edu/aanlib) and func-752

tional parcellations (e.g., Schaefer et al., 2017) are another source of region definition. As a different strategy, by recruiting753

enough subjects, one could use half of the subjects to define ROIs, and the other half to perform ROI-based analysis;754

similarly, one could scan the same set of subjects longer, use the first portion of the data to define ROIs, and the rest to755

perform ROI-based analysis.756

One concern is that the exchangeability requirement of BML assumes that no differential information is available across757

the ROIs in the model. Exchangeability captures symmetry among the ROIs in a sense that does not require independence.758

That is, an independent and identically distributed set of ROIs is exchangeable, but not vice versa. However, every759

exchangeable set of ROIs is identically distributed. Under some circumstances, ROIs can be expected to share some760

information and not fully independent, especially when they are anatomically contiguous or more functionally related than761

the other ROIs (e.g., homologous regions in opposite hemisphere). However, the exchangeability is an epistemological,762

neither physical nor ontological, assumption that renders a convenient approximation of a prior distribution by a mixture763

of i.i.d. distributions (de Finetti’s theorem). The presence of temporal correlation in time series regression may cause the764

underestimation of variances because the conventional statistics heavily relies on the concept of degrees of freedom. In765

contrast, Bayesian inferences build on posterior distributions without invoking the degrees of freedom, and the violation of766

exchangeability usually leads to negligible effect on the final shape of posterior distributions except for the precise sequence767

in which the posterior draws occur (McElreath, 2016). Furthermore, the performance of BML can be effectively examined768

through posterior predictive checks and cross validations, as illustrated in Fig. 3. Further improvement may be possible769

through future modeling work on exploring the possibility of capturing the finer structures among the ROIs.770

It might be tempting to apply the BML strategy to the whole brain voxel-wise analysis (e.g., shrinking the effects771

among voxels). However, such an extension faces serious issues, such as daunting computational cost and the loss of spatial772

specificity. Nevertheless, BML with ROIs defined from a whole brain atlas could be a viable solution. Other limitations of773

the ROI-based BML are as follows.774

1) Just as the FWE correction on the massively univariate modeling results is sensitive to the size of the full domain775

in which it is levied (whole brain, gray matter, or a user-defined volume), so the results from BML will depend to some776

extent on the number of ROIs (or which) ones included. For a specific ROI j, changing the composition among the777

rest of ROIs (e.g., adding an extra ROI or replacing one ROI with another) may result in a different prior distribution778

(e.g, θj ∼ N(µ, τ2) in BML (5)) and a different posterior distribution for θj . However, it merits noting that the regions779

should not be arbitrarily chosen but rather selected from the current knowledge and relevancy of the involving effect under780

investigation.781

8A popular cluster reporting method among the neuroimaging software packages is to simply present the investigator only with the icebergs
above the water, the surviving clusters, reinforcing the illusionary either-or dichotomy under NHST.
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2) ROI data extraction involves averaging among voxels within the region. Averaging, as a spatial smoothing or low-pass782

filtering process, condenses, reduces or dilutes the information among the voxels (e.g., 30) within the region to one number,783

and loses any finer spatial structure within the ROI. In addition, the variability of extracted values across subjects and784

across ROIs could be different from the variability at the voxel level.785

3) ROI-based analysis is conditional on the availability and quality of the ROI definition. One challenge facing ROI786

definition is the inconsistency in the literature due to inaccuracies across different coordinate/template systems and publi-787

cation bias. In addition, some extent of arbitrariness is embedded in ROI definition; for example, a uniform adoption of a788

fixed radius may not work well due to the heterogeneity of brain region sizes. When not all regions or subregions currently789

can be accurately defined, or when no prior information is available to choose a region in the first place, the ROI-based790

approach may miss any potential regions if they are not included in the model.791

Despite these limitations, we believe that BML holds its unique promising potentials and advantages over the conven-792

tional approaches, and we hope that it will serve as a catalyst for a wider modeling landscape in neuroimaing. As shown793

here, the performance of BML can be directly assessed and compared to the conventional approaches through posterior794

predictive checks and cross validations. Admittedly, as all models are idealized statistical representations, our BML work795

presented here is only an incremental step in neuroimaging; besides multiplicity, NIHST pitfalls and inefficient modeling,796

there remain daunting challenges such as linearity assumption (e.g., superposition among overlapping hemodynamic re-797

sponses), temporal correlation (Olszowy et al., 2017) and the inaccuracy of presumed hemodynamic response modeling in798

FMRI data analysis.799

Conclusion800

The prevalent adoption of dichotomous decision making under NHST runs against the continuous nature of most801

quantities under investigation, including neurological responses, which has been demonstrated to be problematic through802

type S and type M errors when the signal-to-noise ratio is low. The conventional correction for FWE in neuroimaging data803

analysis is viewed as a “desirable” standard procedure for whole brain analysis because the criterion is a pivotal component804

of NHST. However, it is physiologically unfeasible to claim that there is absolutely no effect in most brain regions; therefore,805

we argue that setting the stage only to fight the straw man of no effect anywhere is not necessarily a powerful nor efficient806

inference strategy. Inference power is further comprimised by FWE correction due to the inefficiency involved in the807

massively univariate modeling approach. As BOLD responses in the brain share the same scale and range, the ROI-based808

BML approach proposed here allows the investigator to borrow strength and effectively regularize the distribution among809

the regions. Furthermore, no unnecessary penalization is levied on small regions under BML simply because of their810

anatomical structure, thus BML can simultaneously achieve meaningful spatial specificity and detection efficiency. Lastly,811

BML can provide increasing transparency on model building, quality control, and detailed results reporting, and offers a812

promising approach to addressing two multiplicity issues: multiple testing and double sidedness.813
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Appendix A. Pitfalls of NHST825

i. It is a common mistake by investigators and even statistical analysts to misinterpret the conditional probability under826

NHST as the posterior probability of the truth of the null hypothesis (or the probability of the null event conditional827

on the current data at hand) even though fundamentally P (data | H0) 6= P (H0 | data).828

ii. One may conflate statistical significance with practical significance, and subsequently treat the failure to reach829

statistical significance as the nonexistence of any meaningful effect. Even though the absence of evidence is not an830

evidence of absence, it is common to read discussions in scientific literature wherein the authors implicitly (or even831

explicitly) treat statistically non-significant effects as if they were zero.832

iii. Statistic- or p-values cannot easily be compared: the difference between a statistically significant effect and another833

effect that fails to pass the significance level does not necessarily itself reach statistical significance.834

iv. How should the investigator handle the demarcation, due to sharp thresholding, between one effect with p = 0.05 (or835

a surviving cluster cutoff of 54 voxels) and another with p = 0.051 (or a cluster size of 53 voxels)9?836

v. The focus on statistic- or p-value seems to, in practice, lead to the preponderance of reporting only statistical, instead837

of effect, maps in neuroimaging, losing an effective safeguard that could have filtered out potentially spurious results838

(Chen et al., 2017b).839

vi. One may mistakenly gain more confidence in a statistically significant result (e.g., high statistic value) in the context840

of data with relatively heavy noise or with a small sample size (e.g., leading to statement such as “despite the small841

sample size” or “despite the limited statistical power”). In fact, using statistical significance as a screener can lead842

researchers to make a wrong assessment about the sign of an effect or drastically overestimate the magnitude of an843

effect.844

vii. While the conceptual classifications of false positives and false negatives make sense in a system of discrete nature (e.g.,845

juror decision on H0: the suspect is innocent), what are the consequences when we adopt a mechanical dichotomous846

approach to assessing a quantity of continuous, instead of discrete, nature?847

viii. It is usually under-appreciated that the p-value, as a function of data, is a random variable, and thus itself has a848

sampling distribution. In other words, p-values from experiments with identical designs can differ substantially, and849

statistically significant results may not necessarily be replicated (Lazzeroni et al., 2016).850

Appendix B. Type S and type M errors851

We discuss two types of error that are not often discussed in neuroimaging: type S and type M. These two types of852

error cannot be directly captured by the FPR concept and may become severe when the effect is small relative to the noise,853

which is usually the situation in BOLD neuroimaging data. In the NHST formulation, we formulate a null hypothesis H0854

(e.g., the effect of an easy task E is identical to a difficult one D), and then commit a type I (or false positive) error if855

wrongly rejecting H0 (e.g., the effect of easy is judged to be statistically significantly different from difficult when actually856

their effects are the same); in contrast, we make a type II (or false negative) error when accepting H0 when H0 is in fact857

false (e.g., the effect of easy is assessed to be not statistically significant from difficult even though their effects do differ).858

These are the dichotomous errors associated with NHST, and the counterbalance between these two types of error are the859

underpinnings of typical experimental design as well results reporting.860

However, we could think about other ways of framing errors when making a statistical assessment (e.g., the easy case861

elicits a stronger BOLD response at some region than the difficult case) conditional on the current data. We are exposed862

to a risk that our decision is contrary to the truth (e.g., the BOLD response to the easy condition is actually lower than863

to the difficult condition). Such a risk is gauged as a type S (for “sign”) error when we incorrectly identify the sign of the864

effect; its values range from 0 (no chance of error) to 1 (full chance of error). Similarly, we make a type M (for “magnitude”)865

error when estimating the effect as small in magnitude if it is actually large, or when claiming that the effect is large in866

magnitude if it is in fact small (e.g., saying that the easy condition produces a much large response than the difficult one867

when actually the difference is tiny); its values range across the positive real numbers: [0, 1) correspond to underestimation868

9The investigator would not be able to even see such borderline clusters since the typical software implementations mechanically adopt a
dichotomous results presentation.
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of effect magnitude, 1 describes correct estimation, and (1, ∞+) mean overestimation. The two error types are illustrated869

in Fig. 5 for inferences made under NHST. In the neuroimaging realm, effect magnitude is certainly a property of interest,870

therefore the corresponding type S and type M errors would be of research interest.871

Geometrically speaking, if the null hypothesis H0 can be conceptualized as the point at zero, NHST aims at the real872

space R excluding zero with a pivot at the point of zero (e.g., D − E = 0); in contrast, type S error gauges the relative873

chance that a result is assessed on the wrong side of the distribution between the two half spaces of R (e.g., D − E > 0874

or D − E < 0), and type M error gauges the relative magnitude of differences along segments of R+ (e.g., the ratio of875

measured to actual effect is � 1 or � 1). Thus, we characterize type I and type II errors as “point-wise” errors, driven876

by judging the equality, and describe type S and type M errors as “direction-wise,” driven by the focus of inequality or877

directionality.878

One direct application of type M error is that publication bias can lead to type M errors, as large effect estimates are879

more likely to filter through the dichotomous decisions in statistical inference and reviewing process. Using the type S and880

type M error concepts, it might be surprising for those who encounter these two error types for the first time to realize881

that, when the data are highly variable or noisy, or when the sample size is small with a relatively low power (e.g., 0.06), a882

statistically significant result at the 0.05 level is quite likely to have an incorrect sign – with a type S error rate of 24% or883

even higher (Gelman and Carlin, 2014). In addition, such a statistically significant result would have a type M error with884

its effect estimate much larger (e.g., 9 times higher) than the true value. Put it another way, if the real effect is small and885

sampling variance is large, then a dataset that reaches statistical significance must have an exaggerated effect estimate and886

the sign of the effect estimate is likely to be incorrect. Due to the ramifications of type M errors and publication filtering,887

an effect size from the literature could be exaggerated to some extent, seriously calling into question the usefulness of888

power analysis under NHST in determining sample size or power, which might explain the dramatic contrast between the889

common practice of power analysis as a requirement for grant applications and the reproducibility crisis across various890

fields. Fundamentally, power analysis inherits the same problem with NHST: a narrow emphasis on statistical significance891

is placed as a primary focus (Gelman and Carlin, 2013).892

The typical effect magnitude in BOLD FMRI at 3 Tesla is usually small, less than 1% signal change in most brain893

regions except for areas such as motor and primary sensory cortex. Such a weak signal can be largely submerged by the894

overwhelming noise and distortion embedded in the FMRI data. The low power for detection of typical FMRI data analyses895

in typical datasets is further compounded by the modeling challenges in accurately capturing the effect. For example, even896

though large number of physiological confounding effects are embedded in the data, it is still difficult to properly incorporate897

the physiological “noises” (cardiac and respirary effects) in the model. Moreover, habituation, saturation, or attenuation898

across trials or within each block are usually not considered, and such fluctuations relative to the average effect would be899

treated as noise or fixed- instead of random-effects (Westfall et al., 2017). There are also strong indications that a large900

portion of BOLD activations are usually unidentified at the individual subject level due to the lack of power (Gonzalez-901

Castillo et al., 2012). Because of these factors, the variance due to poor modeling overwhelms all other sources (e.g., across902

trials, runs, and sessions) in the total data variance (Gonzalez-Castillo et al., 2016); that is, the majority (e.g., 60-80%) of903

the total variance in the data is not properly accounted for in statistical models.904

Appendix C. Multiplicity in neuroimaging905

In general, we can classify four types of multiplicity issues that commonly occur in neuroimaging data analysis.906

A) Multiple testing. The first and major multiplicity arises when the same design (or model) matrix is applied multiple907

times to different values of the response or outcome variable, such as the effect estimates at the voxels within the brain.908

As the conventional voxel-wise neuroimaging data analysis is performed with a massively univariate approach, there are909

as many models as the number of voxels, which is the source of the major multiplicity issue: multiple testing. Those910

models can be, for instance, Student’s t-tests, AN(C)OVA, univariate or multivariate GLM, LME or Bayesian model.911

Regardless of the specific model, all the voxels share the same design matrix, but have different response variable values on912

the left-hand side of the equation. With human brain size on the order of 106 mm3, the number of voxels may range from913

20,000 to 150,000 depending on the voxel dimensions. Each extra voxel adds an extra model and leads to incrementally914

mounting odds of pure chance or “statistically significant outcomes,” presenting the challenge to account for the occurrence915

of mounting family-wise error (FWE), while effectively holding the overall false positive rate (FPR) at a nominal level916

(e.g., 0.05). In the same vein, surface-based analysis is performed with 30,000 to 50,000 nodes (Saad et al., 2004), sharing a917

similar multiple testing issue with its volume-based counterpart. Sometimes the investigator performs analyses at smaller918
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ef
se 0.1 0.3 0.5 0.7 1.0

pwr S M pwr S M pwr S M pwr S M pwr S M
0.1 0.15 0.02 2.66 0.06 0.21 7.58 0.05 0.31 12.86 0.05 0.36 17.71 0.05 0.40 25.55
0.3 0.81 0.00 1.12 0.15 0.02 2.66 0.08 0.09 4.28 0.07 0.15 5.96 0.06 0.23 8.59
0.5 1.00 0.00 1.00 0.34 0.00 1.67 0.15 0.02 2.66 0.10 0.06 3.66 0.07 0.12 5.16
0.7 1.00 0.00 1.00 0.60 0.00 1.28 0.25 0.00 1.96 0.15 0.02 2.67 0.10 0.06 3.74
1.0 1.00 0.00 1.00 0.89 0.00 1.07 0.47 0.00 1.44 0.26 0.00 1.91 0.15 0.02 2.65

The simulations were performed using a modified version of the code from Gelman and Carlin (2014). The power (pwr, gray column), type S
(S, white column) and type M (M, cyan column) errors are estimated using 10,000 iterations with a Student’s t(20)-distribution for an FMRI
population analysis. The setup parameters of each simulation were the true effect (ef ) and standard error (se), which are provided in the row
and column labels, respectively. The true effect and standard error values ranged from 0.1-1.0, representing units of percent signal change. The
combination (in purple) with effect of 0.3% and standard error of 1.0% is used to illustrate the various types of errors further in Fig. 5. In each
simulation, the power is estimated as the sum of the two tailed areas beyond the threshold at the standard significance level of 0.05 (shown in
blue in Fig. 5). Type S error is the ratio of the tailed area that has the opposite sign of the true effect relative to power, and type M error is
expressed as the average value of “significant” results across all simulations relative to the true effect. In the lower triangle, effects with high
power (pwr ≈ 1) tend to have low type S error (S ≈ 0) and low type M error (M ≈ 1). However, as power decreases, type S error increases to a
large fraction of unity, and M � 1.
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The simulation results in the above table are illustrated as three separate plots below, respectively, for power, type S and type M errors. The
combination (purple in the table) with effect of 0.3% and standard error of 1.0% is shown with the large purple diamond in the plots. Substantial
type S and type M errors occur when the true effect is low and unreliable (i.e., with high standard error), shown here especially at the left side
of the black and green curves.

Figure 4: Power, type S and type M errors estimated from simulations
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Figure 5: Illustration of the concept and interpretation for power, type I, type S and type M errors (Gelman, 2015).
Suppose that there is a hypothetical Student’s t(20)-distribution (black curve) for a true effect (blue vertical line) of 0.3
and a corresponding standard error of 1.0 percent signal change, a scenario highlighted in purple in Fig. 4. Under the null
hypothesis (red vertical line and dot-dashed green curve), two-tailed testing with a type I error rate of 0.05 leads to having
thresholds at ±2.086; FPR = 0.05 corresponds to the null distribution’s total area beyond these two critical values (marked
with red diagonal lines). The power is the total area of the t(20)-distribution for the true effect (black curve) beyond these
thresholds, which is 0.06 (shaded in blue). The type S error is the ratio of the blue area in the true effect distribution’s
left tail beyond the threshold of -2.086 to the area in both tails, which is 23% here (i.e., the ratio of the “significant” area
in the wrong-signed tail to that of the total “significant” area). If a random draw from the t(20)-distribution under the
true effect happens to be 2.2 (small gray square), it would be identified as statistically significant at the 0.05 level, and
the resulting type M error would quantify the magnification of the estimated effect size as 2.2/0.3 ≈ 7.33, which is much
larger than unity.
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number of regions of interest (ROIs), perhaps of order 100, but even here adjustment is still required for the multiple919

testing issue (though it is often not made).920

B) Double sidedness. Another occurrence of multiplicity is the widespread adoption of two separate one-sided (or921

one-tailed) tests in neuroimaging. For instance, the comparison between the two conditions of “easy” and “difficult” are922

usually analyzed twice for the whole brain: one showing whether the easy effect is higher than difficult, and the other for923

the possibility of the difficult effect being higher than easy. One-sided testing for one direction would be justified if prior924

knowledge is available regarding the sign of the test for a particular brain region. When no prior information is available for925

all regions in the brain, one cannot simply finesse two separate one-sided tests in place of one two-sided test, and a double926

sidedness practice warrants a Bonferroni correction because the two tails are independent with respect to each other (and927

each one-sided test is more liberal than a two-sided test at the same significance level). However, simultaneously testing928

both tails in tandem for whole brain analysis without correction is widely used without clear justification, and this forms929

a source of multiplicity issue that needs proper accounting (Chen et al., 2018).930

C) Multiple comparisons. It rarely occurs that only one statistical test is carried out in a specific neuroimaging study,931

such as a single one-sample t-test. Therefore, a third source of multiplicity is directly related to the popular term, multiple932

comparisons, which occur when multiple tests are conducted under one model. For example, an investigator that designs933

an emotion experiment with three conditions (easy, difficult, and moderate) may perform several separate tests: comparing934

each of the three conditions to baseline, making three pairwise comparisons, or testing a linear combination of the three935

conditions (such as the average of easy and difficult versus moderate). However, neuroimaging publications seldom consider936

corrections for such separate tests.937

D) Multiple paths. The fourth multiplicity issue to affect outcome interpretation arises from the number of potential938

preprocessing, data dredging and analytical pipelines (Carp, 2012). For instance, all common steps have a choice of939

procedures: outlier handling (despiking, censoring), slice timing correction (yes/no, various interpolations), head motion940

correction (different interpolations), different alignment methods from EPI to anatomical data plus upsampling (1 to 4941

mm), different alignment methods to different standard spaces (Talairach and MNI variants), spatial smoothing (3 to 10942

mm), data scaling (voxel-wise, global or grand mean), confounding effects (slow drift modeling with polynomials, high943

pass filtering, head motion parameters), hemodynamic response modeling (different presumed functions and multiple basis944

functions), serial correlation modeling (whole brain, tissue-based, voxel-wise AR or ARMA), and population modeling945

(univariate or multivariate GLM, treating sex as a covariate of no interest (thus no interactions with other variables) or as946

a typical factor (plus potential interactions with other variables)). Each choice represents a “branching point” that could947

have a quantitative change to the final effect estimate and inference. Conservatively assuming three options at each step948

here would yield totally 310 = 59, 049 possible paths, commonly referred to as researcher degrees of freedom (Simmons949

et al., 2011). The impact of the choice at each individual step for this abbreviated list might be negligible, moderate, or950

substantial. For example, different serial correlation models may lead to substantially different effect estimate reliability951

(Olszowy et al., 2017); the estimate for spatial correlation of the noise could be sensitive to the voxel size to which the952

original data were upsampled (Mueller et al., 2017; Cox and Taylor, 2017), which may lead to different cluster thresholds953

and poor control to the intended FPR in correcting for multiplicity. Therefore, the cumulative effect across all these954

multilevel branching points could be a large divergence between any two paths for the final results. A multiverse analysis955

(Steegen et al., 2016) has been suggested for such situations of having a “garden of forking paths” (Gelman and Loken,956

2013), but this seems highly impractical for neuroimaging data. Even when one specific analytical path is chosen by the957

investigator, it remains possible to invoke potential or implicit multiplicity in the sense that the details of the analytical958

steps such as data sanitation are conditional on the data (Gelman and Loken, 2013). The final interpretation of significance959

typically ignores the number of choices or the potential branchings that may affect the final outcome, even though it would960

be more preferable to have the statistical significance independent of these preprocessing steps.961

Appendix D. Bayesian modeling for one-way random-effects ANOVA962

Here we discuss a classical framework, a hierarchical or multilevel model for a one-way random-effects ANOVA, and
use it as a building block to expand to a Bayesian framework for neuroimaging group analysis. In evaluating this model,
the controllability of inference errors will be focused on type S errors instead of the traditional FPR. Suppose that there
are r measured entities (e.g., ROIs), with entity j measuring the effect θj from nj independent Gaussian-distributed data
points yij , each of which represents a sample (e.g., trial), i = 1, 2, ..., nj . The conventional statistical approach formulates
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r separate models,

yij = θj + εij , i = 1, 2, ..., nj , (18)

where εij is the residual for the jth entity and is assumed to be Gaussian N (0, σ2), j = 1, 2, ..., r. Depending on whether963

the sampling variance σ2 is known or not, each effect can be assessed through its sample mean ȳ·j = 1
nj

∑nj
i=1 yij relative964

to the corresponding variance V 0
j = σ2

nj
, resulting in a Z- or t-test.965

By combining the data from the r entities and further decomposing the effect θj into an overall effect b0 across the r
entities and the deviation ξj of the jth entity from the overall effect (i.e., θj = b0 +ξj , j = 1, 2, ..., r), we have a conventional
one-way random-effects ANOVA,

yij = b0 + ξj + εij , i = 1, 2, ..., nj , j = 1, 2, ..., r, (19)

where b0 is conceptualized as a fixed-effects parameter, ξj codes the random fluctuation of the jth entity from the overall
mean b0, with the assumption of ξj ∼ N (0, τ2), and the residual εij follows a Gaussian distribution N (0, σ2). The classical
one-way random-effects ANOVA model (19) is typically formulated to examine the null hypothesis,

H0 : τ = 0, (20)

with an F -statistic, which is constructed as the ratio of the between mean sums of squares and the within mean sums of966

squares. An application of this ANOVA model (19) to neuroimaging is to compute the intraclass correlation ICC(1,1) as967

τ2

τ2+σ2 when the measuring entities are exchangeable (e.g., families with identical twins; Chen et al., 2017c).968

Whenever multiple values (e.g., two effect estimates from two scanning sessions) from each measuring unit (e.g., subject969

or family) are correlated (e.g., the levels of a within-subject or repeated-measures factor), the data can be formulated using970

a linear mixed-effects (LME) model, sometimes referred to as a multilevel or hierarchical model. One natural ANOVA971

extension is simply to treat the model conceptually as LME, without the need of reformulating the model equation (19).972

However, LME can only provide point estimates for the overall effect b0, cross-region variance τ2 and the data variance973

σ2; that is, the LME (19) cannot directly provide any information regarding the individual ξj or θj values because of974

over-fitting due to the fact that the number of data points is less than the number of parameters that need to be estimated.975

Our interest here is neither to assess the variability τ2 nor to calculate ICC, but instead to make statistical inferences
about the individual effects θj . Nevertheless, the conventional NHST (20) may shed some light on potential strategies
(Gelman et al., 2014) for θj . If the deviations ξj are relatively small compared to the overall mean b0, then the corresponding
F -statistic value will be small as well, leading to the decision of not rejecting the null hypothesis (20) at a reasonable,
predetermined significance level (e.g., 0.05); in that case, we can estimate the equal individual effects θj using the overall
weighted mean ȳ·· through full pooling with all the data,

θ̂1 = θ̂2 = ... = θ̂r = ȳ·· =

∑r
j=1

1
σ2
j
ȳ·j∑r

j=1
1
σ2
j

, (21)

where ȳ·j = 1
nj

∑nj
i=1 yij and σ2

j = σ2

nj
are the sampling mean and variance for the jth measuring entity, and the subscript

dot (·) notation indicates the (weighted) mean across the corresponding index(es). On the other hand, if the deviations
ξj are relatively large, so is the associated F -statistic value, leading to the decision of rejecting the null hypothesis (20);
similarly, we can reasonably estimate θj with no pooling across the r entities; that is, each θj is estimated using the jth
measuring entity’s data separately,

θ̂j = ȳ·j =
1

nj

nj∑
i=1

yij , j = 1, 2, ..., r. (22)

However, in estimating θj we do not have to take a dichotomous approach of choosing, based on a preset significance976

level, between these two extreme choices, the overall weighted mean ȳ·· in (21) through full pooling and the separate means977

ȳ·j in (21) with no pooling; instead, we could make the assumption that a reasonable estimate to θj lies somewhere along978

the continuum between ȳ·· and ȳ·j , with its exact location derived from the data instead of by imposing an arbitrary979

threshold. This thinking brings us to the Bayesian methodology.980
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To simplify the situation, we first assume a known sampling variance σ2 for the ith data point (e.g., trial) for the jth
entity; or, in Bayesian-style formulation, we build a BML about the distribution of yij conditional on θj ,

yij |θj ∼ N (θj , σ
2), i = 1, 2, ..., nj , j = 1, 2, ..., r. (23)

With a prior distribution N (b0, τ
2) for θj and a noninformative uniform hyperprior for b0 given τ (i.e., b0|τ ∼ 1), the

conditional posterior distributions for θj can be derived (Gelman et al., 2014) as,

θj |b0, τ, y ∼ N (θ̂j , Vj), where θ̂j =

1
σ2
j
ȳ·j + 1

τ2 b0

1
σ2
j

+ 1
τ2

, Vj =
1

1
σ2
j

+ 1
τ2

, σ2
j =

σ2

nj
, j = 1, 2, .., r. (24)

The analytical solution (24) indicates that 1
Vj

= 1
σ2
j

+ 1
τ2 , manifesting an intuitive fact that the posterior precision is the

cumulative effect of the data precision and the prior precision; that is, the posterior precision is improved by the amount 1
τ2

relative to the data precision 1
σ2
j
. Moreover, the expression for the posterior mode of θ̂j in (24) shows that the estimating

choice in the continuum can be expressed as a precision-weighted average between the individual sample means ȳ·j and the
overall mean b0:

θ̂j =

1
σ2
j
ȳ·j + 1

τ2 b0

1
σ2
j

+ 1
τ2

= wj ȳ·j + (1− wj)b0 = b0 + wj(ȳ·j − b0) = ȳ·j − (1− wj)(ȳ·j − b0), j = 1, 2, .., r, (25)

where the weights wj =
Vj
σ2
j
. The precision weighting in (25) makes intuitive sense in terms of the previously described981

limiting cases:982

i. The full pooling (21) corresponds to wj = 0 or τ2 = 0, which means that the θj are assumed to be the same or fixed983

at a common value. The approach would lead to underfitting because the effect is assumed to be invariance across984

ROIs.985

ii. The no pooling (22) corresponds to wj = 1 or τ2 = ∞, indicating that the r effects θj are uniformly distributed986

within (−∞,∞); that is, it corresponds to a noninformative uniform prior on θj . In contrast to full pooling, no987

pooling tends to overfit the data as the information at one ROI is not utilized to shed light on any other ROIs.988

iii. The partial pooling (24) or (25) reflects the fact that the r effects θj are a priori assumed to follow an independent989

and identically distribution, the prior N (b0, τ
2). Under the Bayesian framework, we make statistical inferences about990

the r effects θj with a posterior distribution (24) that includes the conventional dichotomous decisions between full991

pooling (21) and no pooling (22) as two special and extreme cases. Moreover, as expressed in (25), the Bayesian992

estimate θ̂j can be conceptualized as the precision-weighted average between the individual estimate ȳ·j and the993

overall (or prior) mean b0, the adjustment of θj from the overall mean b0 toward the observed mean ȳ·j , or conversely,994

the observed mean ȳ·j being shrunk toward the overall mean b0. As a middle ground between full pooling and no995

pooling, partial pooling usually provides a better fit to the data since the information is effectively pooled and shared996

across ROIs.997

An important concept for a Bayesian model is exchangeability. Specifically for the BML (23), the effects θj are998

exchangeable if their joint distribution p(θ1, θ2, ..., θr) is immutable or invariant to any random permutation among their999

indices or orders (e.g., p(θ1, θ2, ..., θr) is a symmetric function). Using the ROIs as an example, exchangeability means1000

that, without any a priori knowledge about their effects, we can randomly shuffle or relabel them without reducing our1001

knowledge about their effects. In other words, complete ignorance equals exchangeability: before poring over the data,1002

there is no way for us to distinguish the regions from each other. When the exchangeability assumption can be assumed for1003

θj , their joint distribution can be expressed as a mixture of independent and identical distributions (Gelman et al., 2014),1004

which is essential in the derivation of the posterior distribution (24) from the prior distribution N (b0, τ
2) for θj .1005

To complete the Bayesian inferences for the model (23), we proceed to obtain (i) p(b0, τ |y), the marginal posterior1006

distribution of the hyperparameters (b0, τ), (ii) p(b0|τ, y), the posterior distribution of b0 given τ , and (iii) p(τ |y), the1007

posterior distribution of τ with a prior for τ , for example, a noninformative uniform distribution p(τ) ∼ 1. In practice, the1008

numerical solutions are achieved in a backward order, through Monte Carlo simulations of τ to get p(τ |y), simulations of1009

b0 to get p(b0|τ, y), and, lastly, simulations of θj to get p(θj |b0, τ, y) in (24).1010
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Assessing type S error under BML1011

In addition to the advantage of information merging across the r entities between the limits of complete and no pooling,1012

a natural question remains: how does BML perform in terms of the conventional type I error as well as type S and type M1013

errors? With the “standard” analysis of r separate models in (18), each effect θj is assessed against the sampling variance1014

V 0
j = σ2

j . In contrast, under the BML (23), the posterior variance, as shown in (24), is Vj = 1
1

σ2
j

+ 1
τ2
, σ2

j = σ2

nj
. As the1015

ratio of the two variances V 0
j

Vj
= τ2

τ2+σ2
j
is always less than 1 (except for the limiting cases of σ2 → 0 or τ2 → ∞), BML1016

generally assigns a larger uncertainty than the conventional approach with no pooling. That is, the inference for each effect1017

θj based on the unified model (23) is more conservative than when the effect is assessed individually through the model1018

(18). Instead of tightening the overall FPR through some kind of correction for multiplicity among the r separate models,1019

BML addresses the multiplicity issue through precision adjustment or partial pooling under one model with a shrinking or1020

pooling strength of
√

V 0
j

Vj
= 1√

1+σ2
j/τ

2
.1021

Simulations (Gelman and Tuerlinckx, 2000) indicate that, when making inference based on the 95% quantile interval1022

of the posterior distribution for a single effect θj (j is fixed, e.g., j = 1), the type S error rate for the Bayesian model (23)1023

is less than 0.025 under all circumstances. In contrast, the conventional model (18) would have a substantial type S error1024

rate especially when the sampling variance is large relative to the cross-entities variance (e.g., σ2
j /τ

2 > 2); specifically,1025

type S error reaches 10% when σ2
j /τ

2 = 2, and may go up to 50% if σ2
j much larger than τ2. When multiple comparisons1026

are performed, a similar patterns remains; that is, the type S error rate for the Bayesian model is in general below 2.5%,1027

and is lower than the conventional model with rigorous correction (e.g., Tukey’s honestly significant difference test, wholly1028

significant differences) for multiplicity when σ/τ > 1. The controllability of BML on type S errors is parallel to the usual1029

focus on type I errors under NHST; however, unlike NHST in which the typical I error rate is delibrately controlled through1030

a an FPR threshold, the controllability of type S errors under BML is intrinsically embedded in the modeling mechanism1031

without any explicit imposition.1032

The model (23) is typically seen in Bayesian statistics textbooks as an intuitive introduction to BML (e.g., Gelman et1033

al., 2014). With the indices i and j coding the task trials and ROIs, respectively, the ANOVA model (19) or its Bayesian1034

counterpart (23) can be utilized to make inferences on an ensemble of ROIs at the individual subject level. The conventional1035

analysis would have to deal with the multiplicity issue because of separate inferences at each ROI (i.e., entity). In contrast,1036

there is only one integrated model (23) that leverages the information among the r entities, and the resulting partial pooling1037

effectively dissolves the multiple testing concern. However, the modeling framework can only be applied for single subject1038

analysis, and it is not suitable at the population level; nevertheless, it serves as an intuitive tool for us to extend to more1039

sophisticated scenarios.1040

Appendix E. Derivation of posterior distribution for BML (5)1041

We start with the BML system (5) with a known sampling variance σ2,

yij |πi, θj ∼ N (πi + θj , σ
2), i = 1, 2, ..., n, j = 1, 2, ..., r.

Conditional on θj and prior πi ∼ N(0, λ2), the variance for the sampling mean at the jth ROI, ȳ·j = 1
n

∑n
i=1 yij =

θj + 1
n

∑n
i=1 πi + 1

n

∑n
i=1 εij , is

λ2+σ2

n ; that is,

ȳ·j |θj , λ2 ∼ N(θj ,
λ2 + σ2

n
), j = 1, 2, ..., r.

With priors πi ∼ N(0, λ2) and θj ∼ N(µ, τ2), we follow the same derivation as in the likelihood (23), and obtain the
posterior distribution,

θj |µ, τ, λ,y ∼ N (θ̂j , V ), where y = {yij}, θ̂j =
n

λ2+σ2 ȳ·j + 1
τ2µ

n
λ2+σ2 + 1

τ2

, V =
1

n
λ2+σ2 + 1

τ2

, j = 1, 2, .., r.

When the sampling variance σ2 is unknown, we can solve the LME counterpart in (4),

yij = µ+ πi + ξj + εij , i = 1, 2, ..., n, j = 1, 2, ..., r.
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We then plug the estimated variances λ̂2, τ̂2 and σ̂2 into the above posterior distribution formulas, and obtain the posterior1042

mean and variance through an approximate Bayesian approach.1043
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